Abstract:
The present disclosure is directed to a nozzle cooling system for a gas turbine engine. An impingement plate is positioned radially inwardly from a radially inner surface of an inner side wall of a nozzle. The impingement plate and the inner side wall collectively define an inner chamber. The impingement plate includes a first portion defining one or more impingement apertures and a second portion defining one or more post-impingement apertures. A duct plate encloses the first portion of the impingement plate. The duct plate, the first portion of the impingement plate, and inner side wall collectively define an outer chamber in fluid communication with the inner chamber through the one or more impingement apertures. Compressed air from the outer chamber flows through the one or more impingement apertures into the inner chamber and exits the inner chamber through the one or more post-impingement apertures.
Abstract:
The present disclosure is directed to a rotor blade for a turbomachine. The rotor blade includes an airfoil defining a cooling passage extending between a root and a tip of the airfoil. The airfoil further defines a pocket positioned between the cooling passage and an exterior surface of the airfoil and spaced apart from the cooling passage and the exterior surface. The pocket provides a thermal impediment between the cooling passage and the exterior surface of the airfoil.
Abstract:
An article and method of cooling an article are provided. The article includes a body portion, a plurality of partitions within the body portion, and at least one aperture in each of the partitions, the at least one aperture arranged and disposed to direct fluid towards an inner surface of the body portion. The plurality of partitions form at least one up-pass cavity and at least one re-use cavity arranged and disposed to receive the fluid from the at least one aperture in one of the partitions. The method includes providing the article having an up-pass partition and a re-use partition, generating a first fluid flow through the at least one aperture in the up-pass partition, receiving a post-impingement fluid within the re-use cavity, and generating a re-use fluid flow through the at least one aperture in the re-use partition, the re-use fluid flow being generated from the post-impingement fluid.
Abstract:
An article is disclosed including a manifold, an article wall having at least one external aperture, and a post-impingement cavity disposed between the manifold and the article wall. The manifold includes an impingement plate defining a plenum having a plenum surface, and at least one impingement aperture. The at least one impingement aperture interfaces with the plenum at an intake aperture having a flow modification structure, which, together with the at least one impingement aperture, defines an exhaust aperture. The manifold exhausts a fluid from the plenum into the intake aperture, through the at least one impingement aperture, out the exhaust aperture, into the post-impingement cavity, and through the at least one external aperture.
Abstract:
A hot gas path component includes a substrate having an outer surface and an inner surface. The inner surface defines an interior space. The outer surface defines a pressure side surface and a suction side surface. The pressure and suction side surfaces are joined together at a leading edge and at a trailing edge. A first cooling passage is formed in the suction side surface of the substrate. It is coupled in flow communication to the interior space. A second cooling passage, separate from the first cooling passage, is formed in the pressure side surface. The second cooling passage is coupled in flow communication to the interior space. A cover is disposed over at least a portion of the first and second cooling passages. The interior space channels a cooling fluid to the first and second cooling passages, which channel the cooling fluid therethrough to remove heat from the component.
Abstract:
The present disclosure is directed to a rotor blade for a gas turbine engine. The rotor blade includes a platform having a radially inner surface and a radially outer surface. A connection portion extends radially inwardly from the radially inner surface of the platform. An airfoil extends radially outwardly from the radially outer surface of the platform to an airfoil tip. The airfoil includes a leading edge portion and a trailing edge portion. The platform, the airfoil, and the connection portion collectively define a cooling circuit extending from an inlet defined by the connection portion to one or more outlet passages at least partially defined by the trailing edge portion of the airfoil. At least one of the one or more outlet passages include an entrance and an exit radially inwardly offset from the entrance.
Abstract:
A turbine nozzle includes an airfoil that extends in span from an inner band to an outer band where the inner band and the outer band define inner and outer flow boundaries of the turbine nozzle. At least one of the inner band and the outer band defines a plurality of cooling channels formed and a coolant discharge plenum beneath a gas side surface of the corresponding inner or outer band that is in fluid communication with the cooling channels. The coolant discharge plenum is formed within the inner band or the outer band downstream from the cooling channels and upstream from a plurality of coolant discharge ports.
Abstract:
Systems and devices configured to seal interfaces/gaps between stationary components of turbines and manipulate a flow of coolant about portions of the turbine during turbine operation are disclosed. In one embodiment, a seal element includes: a first surface shaped to be oriented toward a pressurized cavity of the turbine; a second surface oriented substantially opposite the first surface and shaped to sealingly engage a contact surface of the static components; and a first set of angular features disposed in the second surface, the first set of angular features fluidly connecting the pressurized cavity and the flowpath of the turbine.
Abstract:
A turbine airfoil includes a leading edge and a trailing edge. Also included is a cooling channel extending in a radial direction and tapering inwardly toward the trailing edge, the cooling channel at least partially defined by a pressure side face and a suction side face. Further included is a first plurality of turbulators protruding from one of the pressure side face and the suction side face to define a first height, the first plurality of turbulators extending toward the trailing edge of the turbine airfoil and spaced radially from each other. Yet further included is a second plurality of turbulators protruding from one of the pressure side face and the suction side face to define a second height that is less than the first height, the second plurality of turbulators extending toward the trailing edge of the turbine airfoil and spaced radially from each other.
Abstract:
A system and method for controlling the performance of a gas turbine system is provided. A backflow margin pressure ratio for a component is determined. A modified backflow margin pressure ratio for the component is calculated based on the number of fired hours and starts. Bleed air along a first flow path is controlled based on the modified backflow margin pressure ratio.