Abstract:
An inspection method and system for inspecting whether there is any liquor in goods is provided. The method includes: acquiring a radiation image of goods being inspected; processing on the radiation image to obtain an ROI; inspecting on the ROI using a liquor goods inspection model to determine if the ROI of the radiation image contains liquor goods. The above solution performs liquor inspection on scanned images of goods, especially containers, so as to intelligently assist the image inspectors.
Abstract:
The present disclosure provides a method and device for operating a CT-based three-dimensional image used for security inspection. The method includes: providing a CT-based three-dimensional image used for security inspection; accepting a selection of an image of an object in the three-dimensional image; and responding to the selection. The present disclosure has strong practicality, and can provide effective reference information for image judgment in the CT-based security inspection field.
Abstract:
Disclosed is a method for positioning a target in a three-dimensional CT image and a CT system for security inspection. The method includes: displaying a three-dimensional CT image; receiving a selection by a user of at least one area of the three-dimensional CT image at a viewing angle; generating at least one set of three-dimensional objects in a depth direction based on the selection; and determining a target object from the set. With the above technical solutions, the user may be facilitated in marking a suspected object in a CT image in a quick manner.
Abstract:
The present disclosure relates to a multi-spectrum X-ray grating-based imaging system and imaging method. The multi-spectrum X-ray grating-based imaging system according to the present disclosure comprises an incoherent X-ray source for emitting X-rays to irradiate an object to be detected, a grating module comprising a first absorption grating and a second absorption grating which are disposed in parallel to each other and are sequentially arranged in an X-ray propagation direction, and an energy-resolved detecting device for receiving the X-rays that have passed through the first absorption grating and the second absorption grating. One of the first absorption grating and the second absorption grating performs phase stepping actions within at least one period; during each phase stepping action, the incoherent X-ray source emits X-rays to irradiate the object to be detected; the energy-resolved detecting device receives the X-rays and performs spectrum identification of the X-rays; and after a series of phase stepping actions and data acquisitions over a period, at each pixel on the energy-resolved detecting device, X-ray intensities in each energy range are represented as an intensity curve.
Abstract:
Embodiments of the present invention provide a protective device including a sliding door and a housing, together forming a closed space, wherein, a guide rail is provided on the housing, and the sliding door is slidable along the guide rail to open or close the closed space. In addition, embodiments of the present invention also provide a laser Raman safety inspection apparatus including the abovementioned protective device.
Abstract:
The present disclosure relates to a method, a system and a device for security inspection, pertaining to the field of security inspection. The method includes: before a baggage enters a security inspection machine and/or after the baggage leaves the security inspection machine, acquiring information about the baggage and information about a subject person; while the baggage is inside the security inspection machine to be scanned, acquiring a scanned image of the baggage; and correlating the information about the baggage, the scanned image of the baggage and the information about the subject person in a storage system, wherein acquiring information about the baggage and information about a subject person includes analyzing a video.
Abstract:
The present disclosure relates to detection systems and methods. One illustrative detection system may include a distributed radiation source having a plurality of radiation source focus points, which irradiate an object under detection, wherein the plurality of radiation source focus points are divided into a certain number of groups, and a primary collimator that limits rays of each of the radiation source focus points such that the rays emit into an XRD detection device. An XRD detection device may include a plurality of XRD detectors that are divided into the same number of groups as the radiation source focus points, wherein XRD detectors in a same group are arranged to be separated by XRD detectors in other groups, and rays of each of the radiation source focus points are received by XRD detectors having the same group number as the group number of the radiation source focus point.
Abstract:
The present disclosure discloses a radiography system including: a ray source, comprising a plurality of X-ray generators which are distributed on one or more planes intersected with a moving direction of an object being inspected; a detector module comprising a plurality of detection units; a data collection circuit; a controller, configured to control at least two X-ray generators of the plurality of X-ray generators in the ray source to generate X-rays alternately such that the object is scanned by the generated X-rays; and control the detector module and the data collection circuit to respectively obtain detection data corresponding to the at least two X-ray generators; and a data processing computer, configured to create images of the object being inspected in view angles of the at least two X-ray generators based on the detection data. The above embodiments may implement a multi-view-angle perspective imaging system within a single scan plane by utilizing a distributed X-ray source and reuse of the detectors.
Abstract:
The present disclosure discloses an inspection method and device. The method comprises steps of acquiring a perspective image of an inspected object; processing the perspective image to obtain a region of interest; and automatically detecting the region of interest using a cigarette model, to determine whether the region of interest of the perspective image belongs to a cigarette. In the present disclosure, cigarette detection is implemented on a scanned image of goods, particularly a container, which can avoid the problem of detection vulnerability and poor effect of manual image judgment for the conventional manner, and is of significance in fighting against cigarette smuggling.
Abstract:
Methods for extracting a shape feature of an object and security inspection methods and apparatuses. Use is made of CT's capability of obtaining a 3D structure. The shape of an object in an inspected luggage is used as a feature of a suspicious object in combination with a material property of the object. For example, a false alarm rate in detection of suspicious explosives may be reduced.