Abstract:
An embodiment of the present invention provides a Raman spectroscopic detection method for detecting a sample in a vessel, comprising the steps of: (a) measuring a Raman spectrum of the vessel to obtain a first Raman spectroscopic signal; (b) measuring a Raman spectrum of the sample through the vessel to obtain a second Raman spectroscopic signal; (c) removing an interference caused by the Raman spectrum of the vessel from the second Raman spectroscopic signal on basis of the first Raman spectroscopic signal to obtain a third Raman spectroscopic signal of the sample itself; and (d) identifying the sample on basis of the third Raman spectroscopic signal. By means of the above method, the Raman spectrum of the sample in the vessel may be detected correctly so as to identify the sample to be detected efficiently.
Abstract:
Embodiments of the present invention provide a Raman spectroscopic inspection method, comprising the steps of: measuring a Raman spectrum of an object to be inspected successively to collect a plurality of Raman spectroscopic signals; superposing the plurality of Raman spectroscopic signals to form a superposition signal; filtering out a florescence interfering signal from the superposition signal; and identifying the object to be inspected on basis of the superposition signal from which the florescence interfering signal has been filtered out. By means of the above method, a desired Raman spectroscopic signal may be acquired by removing the interference caused by a florescence signal from a Raman spectroscopic inspection signal of the object. It may inspect correctly the characteristics of the Raman spectrum of the object so as to identify the object effectively.
Abstract:
The present invention relates to a Raman-enhanced substrate fixing device and a Raman-enhanced detecting system. the Raman-enhanced substrate fixing device comprises a fixing base, wherein the fixing base is provided with a substrate receiving portion and a probe connecting portion, the substrate receiving portion is used for receiving a Raman-enhanced substrate, the probe connecting portion is used for connection with a probe of a Raman spectrometer, and the probe connecting portion and the substrate receiving portion are disposed such that light emitted by the probe is capable of being irradiated onto the Raman-enhanced substrate.
Abstract:
A pretreatment device for food safety detection, including: a base; a vortex oscillator disposed on the base; and a container holding mechanism disposed on the base and configured to hold a container such that the container is positioned above the vortex oscillator, wherein the vortex oscillator is configured to cooperate with the container holding mechanism to treat materials contained in the container. The present disclosure further provides a pretreatment method for food safety detection. By means of the pretreatment device and the pretreatment method according to the present disclosure, it can perform pretreatment work of food safety detection efficiently and simply, and save labor costs.
Abstract:
The disclosure provides a portable Raman device that includes a laser for emitting exciting light; a spectrometer for receiving Raman scattered light and converting the Raman scattered light into an electrical signal after beam splitting; a probe for leading the exciting light to irradiate on a sample and collect the Raman scattered light of the sample; and a fiber system connected between the laser and the probe as well as between the probe and the spectrometer so as to conduct light transmission. In comparison to conventional Raman devices, the portable Raman device of the disclosure has a simplified optical system, such that placement of components of the Raman device are more flexible, the whole size of the Raman device are reduced, and thus requirements of size miniaturization and quick real-time measurement are satisfied.
Abstract:
Embodiments of the present disclosure provide a safety protection device for Raman spectroscopy detection and a Raman spectroscopy detection system including the safety protection device. The safety protection device includes: a detection cavity including a cavity body, the cavity body having an opening end through which a sample to be detected is allowed to be placed into the detection cavity; and a cover configured to cover and engage the opening end so as to form, together with the detection cavity, an explosion proof container defining a space for receiving the sample to be detected, the detection cavity further includes a detection opening formed in the cavity body such that a Raman detection probe is allowed to be inserted into the space through the detection opening so as to detect the sample.
Abstract:
The present disclosure relates to a non-contact type security inspection and method, the system including: a laser source for emitting probe light beams which penetrate through a container or a packaging and are irradiated onto an inspected object contained in the container or the packaging; an optical collection device for collecting an exciting light excited by the probe light beams on the inspected object; a spectrum analyzer for analyzing spectral characteristics of the exciting light collected by the optical collection device so as to determine characteristics of the inspected object; and a shielding apparatus for preventing at least part of the exciting light excited by the probe light beams on the container or the packaging from entering an induction
Abstract:
Embodiments of the present invention provide a protective device including a sliding door and a housing, together forming a closed space, wherein, a guide rail is provided on the housing, and the sliding door is slidable along the guide rail to open or close the closed space. In addition, embodiments of the present invention also provide a laser Raman safety inspection apparatus including the abovementioned protective device.
Abstract:
A raman spectroscopy method of measuring melamine contents in dairy products having different matrixes. The method includes: (a) establishing a database of characteristic curves of dairy products having different matrixes; (b) taking several copies of the dairy products having one certain unknown matrix and adding melamine standard solutions having different concentrations therein, to obtain a series of dairy product samples in which the relative concentrations of the melamine are known; (c) performing raman spectrum testing analysis and obtaining corresponding characteristic peak intensities to obtain a slope of the characteristic curve showing variation of the characteristic peak intensities with the relative concentrations of the melamine; (d) searching the database of step (a) using the slope of the characteristic curve of the dairy product samples to find a matching characteristic curve, and (e) calculating concentration of melamine in the dairy products by using the matched characteristic curve and the characteristic peak intensity.
Abstract:
A method and an apparatus for inspecting security of an object to be detected. The method includes: guiding an exciting light to the object, collecting a first optical signal from the object and generating .a first spectrum from the first optical signal; guiding the exciting light to the object again after a certain time interval, collecting a second optical signal from the object and generating a second spectrum from the second optical signal; and comparing the first spectrum with the second spectrum to determine whether or not the object is damaged.