Abstract:
A method for operating an electrolysis device, having a converter which is connected on an AC voltage side to an AC voltage grid via a decoupling inductance and draws an AC active power from the AC voltage grid, and an electrolyzer, which is connected to the converter on the DC voltage side, is provided. The method includes operating the electrolysis device, when a grid frequency corresponds to a nominal frequency of the ACT voltage grid and is substantially constant over a time period, with an electrical power which is between 50% and 100% of a nominal power of the electrolyzer, and operating the converter in a voltage-impressing manner, such that an AC active power drawn from the AC voltage grid is changed on the basis of a change and/or a rate of change of the grid frequency in the AC voltage grid.
Abstract:
A solar module includes one or more photovoltaic (PV) modules, a short-circuit switch connected in parallel with at least one of the one or PV modules, and a control unit connected in parallel with the short-circuit switch. The at least one of the one or more PV modules supplies electrical power to the control unit and is connectable via a first and a second module terminal to further solar modules to form a string. The control unit is configured to actuate the short-circuit switch depending on an insulation voltage dropped between a ground potential reference terminal of the solar module and one of the first and second module terminals.
Abstract:
A solar module includes one or more photovoltaic (PV) modules, a short-circuit switch connected in parallel with at least one of the one or PV modules, and a control unit connected in parallel with the short-circuit switch. The at least one of the one or more PV modules supplies electrical power to the control unit and is connectable via a first and a second module terminal to further solar modules to form a string. The control unit is configured to actuate the short-circuit switch depending on an insulation voltage dropped between a ground potential reference terminal of the solar module and one of the first and second module terminals.
Abstract:
A method for connecting an energy generation installation to a medium-voltage grid includes determining a calibration factor for adjusting first voltage values to second voltage values by a controller of the energy generation installation. During an idle state of a medium-voltage transformer, the first voltage values are detected at a capacitive voltage divider, arranged on the medium-voltage side of the medium-voltage transformer, and the second voltage values are detected by a voltage detection means, arranged on the low-voltage side of the medium-voltage transformer. The method further includes closing a circuit breaker arranged on the medium-voltage side of the medium-voltage transformer by the controller of the energy generation installation, when voltage values determined at the capacitive voltage divider exceed a first threshold value after the calibration factor has been applied.
Abstract:
For monitoring an inverter that includes separate input-side connectors for multiple direct-current generators with regard to the occurrence of a critical fault current, differential currents in at last two pairs of input lines are measured separately in the inverter. The at last two pairs of input lines conduct the currents that are fed in at different input-side connectors, and all pairs of input lines in their entirety transmit all currents that are fed in at the connectors. The differential currents are compared with a limit value separately for each pair of input lines. A case of the limit value being exceeded is recognized as a fault. In addition, a sum of simultaneously occurring differential currents in all pairs of input lines is determined and the sum is compared with a further limit value, wherein a case of the further limit value being exceeded is also recognized as a fault.
Abstract:
An inverter has an inverter bridge connected between two DC busbars on the input side and connected to an AC output on the output side. The two DC busbars run, in a manner overlapping one another, in planes which are parallel to one another. The inverter bridge has a subcircuit having a plurality of semiconductor switches between the AC output and each DC busbar. Semiconductor modules which form the two subcircuits are connected, in a manner arranged beside one another, to the two DC busbars and to the AC output via connections. A connection element which leads to the AC output begins on that side of the DC busbar which faces the semiconductor modules in a region overlapped by the DC busbars and connects the semiconductor modules of the two subcircuits to one another there.
Abstract:
The disclosure relates to an electrical connection between two busbars made of flat conductors and an insulating layer disposed between the conductors at the opposite longitudinal edges of the two busbars. The two conductors of each busbar run parallel to each other at a distance on the longitudinal edge thereof, wherein a molded part made of electrically insulating material bridges the distances between the conductors of the two busbars. Electrically conductive contact elements, forced against each other but electrically insulated from each other, each contact one of the conductors of each busbar by means of structured contact surfaces and clamp the same between the element and the molded part, wherein the contact surfaces for the conductors of the two busbars including clamping protrusions running parallel to the longitudinal edges.
Abstract:
For monitoring an inverter that includes separate input-side connectors for multiple direct-current generators with regard to the occurrence of a critical fault current, differential currents in at last two pairs of input lines are measured separately in the inverter. The at last two pairs of input lines conduct the currents that are fed in at different input-side connectors, and all pairs of input lines in their entirety transmit all currents that are fed in at the connectors. The differential currents are compared with a limit value separately for each pair of input lines. A case of the limit value being exceeded is recognized as a fault. In addition, a sum of simultaneously occurring differential currents in all pairs of input lines is determined and the sum is compared with a further limit value, wherein a case of the further limit value being exceeded is also recognized as a fault.
Abstract:
The disclosure relates to a PV system including at least one inverter coupled to a grid via an AC disconnecting element and at least one transformer. The PV system includes at least one PV sub-generator having at least one PV string connected to a DC connection region of the inverter via DC lines. The PV system includes protection devices including a DC short-circuiting switch for short-circuiting the at least one PV string and a reverse-current protection element connected downstream thereof. The protection device includes an AC short-circuiting switch arranged upstream of the AC disconnecting element.