Abstract:
A method of fabricating a poly-Si thin film and a method of fabricating a poly-Si TFT using the same are provided. The poly-Si thin film is formed at a low temperature using inductively coupled plasma chemical vapor deposition (ICP-CVD). After the ICP-CVD, excimer laser annealing (ELA) is performed while increasing energy by predetermined steps. A poly-Si active layer and a SiO2 gate insulating layer are deposited at a temperature of about 150° C. using ICP-CVD. The poly-Si has a large grain size of about 3000 Å or more. An interface trap density of the SiO2 can be as high as 1011/cm2. A transistor having good electrical characteristics can be fabricated at a low temperature and thus can be formed on a heat tolerant plastic substrate.
Abstract:
Provided are a method of forming a single crystalline silicon layer, a structure including the same, and method of fabricating a thin film transistor (“TFT”) using the same. The method of forming the single crystalline silicon layer includes forming a silicon nitride layer on a substrate, forming an insulating layer on the silicon nitride layer, forming a hole in the insulating layer to a predetermined dimension, depositing a first silicon layer on an exposed bottom of the hole using a selective deposition process, depositing a second silicon layer on the insulating layer and the first silicon layer formed in the hole, and crystallizing the second silicon layer using a thermal process. In this method, a high-quality single crystalline silicon layer can be obtained.
Abstract:
Semiconductor-on-insulator (SOI) structures, semiconductor devices using the same and methods of manufacturing the same, and more particularly, to a structure with a single-crystalline (for example, germanium (x-Ge)) layer on an insulating layer, semiconductor devices using the same, and methods of manufacturing the same. The SOI structure may include a single-crystalline substrate formed of a first semiconductor material, a first insulating layer formed on the substrate and having at least one window exposing a portion of the substrate, a first epitaxial growth region formed on a surface of the substrate exposed by the window and formed of at least one of the first semiconductor material and a second semiconductor material, and a first single-crystalline layer formed on the first insulating layer and the first epitaxial growth region and formed of the second semiconductor material, and crystallized using a surface of the first epitaxial growth region as a seed layer for crystallization.
Abstract:
Provided is a strained SOI structure and a method of manufacturing the strained SOI structure. The strained SOI structure includes an insulating substrate, a SiO2 layer formed on the insulating substrate, and a strained silicon layer formed on the SiO2 layer.
Abstract:
A processing device has a personal authentication information receiving unit for receiving personal authentication information, a security information DB, and a processing information managing unit. The processing information managing unit converts the personal authentication information received by the personal authentication receiving unit to a user ID, detects an event concerning a processing operation, and associates the event with the user ID, thereby creating or updating an access management table for processing performance information, for storage in the security information DB. The processing information management unit then controls access to the processing performance information based on the access management table and the user ID obtained by conversion of the personal authentication information received by the personal authentication information receiving unit.
Abstract:
In an electronic device, and a method of manufacturing the same, the electronic device includes a first substrate, a first lower capacitor on the first substrate, a first lower switching element on the first lower capacitor, and a second substrate on the first lower switching element. The electronic device may further include a second lower switching element which is isolated from the first lower capacitor, and an upper capacitor on the second substrate, the lower electrode of the upper capacitor being connected to the second lower switching element.
Abstract:
Provided are a poly crystalline silicon semiconductor device and a method of fabricating the same. Portions of a silicon layer except for gates are removed to reduce a parasitic capacitance caused from the silicon layer existing on gate bus lines. The silicon layer exists under the gates only, thus the parasitic capacitance is reduced and the deterioration and the delay of signals are prevented. Accordingly, the poly crystalline silicon semiconductor device, such as a thin film transistor, has excellent electric characteristics.
Abstract:
A circuit board assembly includes an electrical component mounted on or in the assembly; a conductive layer, which is electrically connected to the electrical component; a high-temperature dissipation resin, which is of insulating material and is arranged so as to dissipate heat generated in the assembly; and a molding resin surrounding the electrical component. Heat, generated at electrical components in a circuit board assembly, is transferred and dispersed through the high-temperature dissipation material all over the assembly. Further, since the high-temperature dissipation resin is of an insulating material, it is unnecessary to consider a short-circuit problem in the assembly.
Abstract:
In a vapor-phase growth method in which a silicon-germanium mixed crystal layer is deposited on a semiconductor substrate, the vapor-phase growth method comprises a first step of introducing silicon raw material gas into a reaction furnace in such a manner that a silicon raw material gas partial pressure increases in proportion to a time to thereby deposit a first semiconductor layer of a silicon layer on the semiconductor substrate under reduced pressure, a second step of introducing silicon raw material gas and germanium raw material gas into the reaction furnace in such a manner that a desired germanium concentration may be obtained to thereby deposit a second semiconductor layer of a silicon-germanium mixed crystal layer on the first semiconductor layer under reduced pressure and a third step of introducing silicon raw material gas into the reaction furnace under reduced pressure to thereby deposit a third semiconductor layer of a silicon layer on the second semiconductor layer. Thus, there can be obtained a semiconductor layer in which a misfit dislocation can be improved.
Abstract:
A silicon nanowire substrate having a structure in which a silicon nanowire film having a fine line-width is formed on a substrate, a method of manufacturing the same, and a method of manufacturing a thin film transistor using the same. The method of manufacturing the silicon nanowire substrate includes preparing a substrate, forming an insulating film on the substrate, forming a silicon film on the insulating film, patterning the insulating film and the silicon film into a strip shape, reducing the line-width of the insulating film by undercut etching at least one lateral side of the insulating film, and forming a self-aligned silicon nanowire film on an upper surface of the insulating film by melting and crystallizing the silicon film.