Abstract:
An FPC (31) on which LEDs (32) are mounted at predetermined intervals in the longitudinal direction is secured to a lower chassis (21b) used also as a heat-dissipating plate through an elastic heat conductive sheet (34). With a retaining plate (33) is overlapped on the mounting surface of the FPC (31), a screw (S) is inserted into the retaining plate (33) from the outside of a bezel (5) to fix the retaining plate. Furthermore, the FPC (31) is held between the retaining plate (33) and the lower chassis (21b).
Abstract:
In a backlight device, among a plurality of light emitting diodes, light amounts thereof are measured in advance, and they are classified as any one of two or more light amount ranks according to the measurement results. In each of an upper region and a lower region of the light emitting diodes that are set on an upper side and lower side of a light guide plate, respectively, the light emitting diodes that are classified as having the same light amount rank are disposed.
Abstract:
A substrate processing apparatus is configured to provide in series a plurality of processing blocks, each block including a processing unit and a transport robot transporting a substrate. A substrate rest is provided in a connecting portion of adjacent processing blocks. A sensor plate with sensor coils is provided spanning over support pins of the substrate rest. Once a temperature-measurement substrate with temperature-measuring elements, each element formed by connecting a coil to a quartz resonator, is placed on the support pins, a transmitter-receiver transmits transmission waves corresponding to the characteristic frequencies of the quartz resonators to the temperature-measuring elements through the sensor coils. After the stop of the transmission, the transmitter-receiver receives electromagnetic waves from the temperature-measuring elements through the sensor coils, and the temperature computer computes the substrate temperature based on the frequencies of the electromagnetic waves.
Abstract:
In a lighting device for a display device, sensor output determination portions determine whether color sensor output signals are greater than or equal to a predetermined threshold. Variable gain amplifiers amplify the color sensor output signals with a predetermined gain. A color control portion performs color control based on post-amplification signal and obtains luminances of three types of LEDs. Constant current circuits and the PWM circuits drive the three types of LEDs in accordance with control from the color control portion. Gains of the variable gain amplifiers are switched in a stepwise manner so as to become higher as the color sensor output signals become lower. Thus, it is possible to perform color control with high accuracy even when darker light is provided.
Abstract:
A roulette-shaped big monopoly unit 12 is disposed at the center of a casing 10, and a triangular pointer 14 for pointing a partition of the annular board 13 is disposed at the summit of the big monopoly unit 12. The players playing in the satellites 20 satisfy prescribed conditions to thereby to play in a big monopoly game using the big monopoly unit 12. In the big monopoly game, the players sequentially revolve the annular board 12. The game is advanced in accordance with contents of a partition pointed by the pointer 14 which is common among all the players when the revolving annular board 13 stops. The game can be played closely related among the satellites.
Abstract:
To suppress a decrease in the contrast caused by the reflection on the interface to the air layer without decreasing the quality of display. A reflection-type liquid crystal display device includes a light guide plate having a polarizing element stuck or adhered thereto on the side facing a reflection-type liquid crystal display panel, a source of light arranged on an end surface side of the light guide plate, and the reflection-type liquid crystal display panel arranged maintaining a predetermined gap relative to the light guide plate, wherein a light-diffusing function is imparted to the surface of the reflection-type liquid crystal display panel on the side facing the light guide plate.
Abstract:
There is provided a liquid crystal display having good display characteristics and a method of driving the same. Pixel data is written in plural pixels on one gate bus line at a top end of a display area at a first point in time on a line sequential basis. At a second point in time, the writing of pixel data in pixels in an upper part of the screen is completed, and writing of pixel data in pixels in a lower part of the screen is started. At a third point in time, the writing of pixel data in the pixels in the lower part of the screen is completed. A fluorescent tube on the upper side of the screen is turned on for a period between a third point in time after the writing of pixel data in the upper part of the screen and a fourth point in time before writing of pixel data for the next frame is started and is turned off in other periods. A fluorescent tube on the lower side of the screen is turned on for a period between a fifth point in time after the writing of pixel data in the lower part of the screen in the preceding frame and a sixth point in time before writing of pixel data in the lower part of the screen is started and is turned off in other periods.
Abstract:
A display device includes a backlight having a discharge tube and a reflector. A heat conduction member is attached to the reflector in contact with the discharge tube, so that a part of the discharge tube is locally cooled by the heat conduction member. Liquid mercury is collected at a first position in the discharge tube, and the backlight is assembled so that the heat conduction member or other cooling device is located at the first position. Also, the display device includes an optical sheet having a diffusion portion having projections containing scattering material particles.
Abstract:
A substrate processing apparatus comprises an interface block. An exposure device is arranged adjacent to the interface block. The interface block comprises first and second cleaning/drying processing units. A substrate W is subjected to cleaning and drying processing before exposure processing in the first cleaning/drying processing unit, while being subjected to cleaning and drying processing after the exposure processing in the second cleaning/drying processing unit.
Abstract:
A display device includes a backlight having a discharge tube and a reflector. A heat conduction member is attached to the reflector in contact with the discharge tube, so that a part of the discharge tube is locally cooled by the heat conduction member. Liquid mercury is collected at a first position in the discharge tube, and the backlight is assembled so that the heat conduction member or other cooling device is located at the first position. Also, the display device includes an optical sheet having a diffusion portion having projections containing scattering material particles.