Abstract:
A semiconductor memory device includes a substrate having a conductor region thereon, an interlayer dielectric layer on the substrate, and a conductive via electrically connected to the conductor region. The conductive via has a lower portion embedded in the interlayer dielectric layer and an upper portion protruding from a top surface of the interlayer dielectric layer. The upper portion has a rounded top surface. A storage structure conformally covers the rounded top surface.
Abstract:
A magnetoresistive random access memory (MRAM) structure includes a magnetic tunnel junction (MTJ), and a top electrode which contacts an end of the MTJ. The top electrode includes a top electrode upper portion and a top electrode lower portion. The width of the top electrode upper portion is larger than the width of the top electrode lower portion. A bottom electrode contacts another end of the MTJ. The top electrode, the MTJ and the bottom electrode form an MRAM.
Abstract:
A method for fabricating semiconductor device includes the steps of: forming a first magnetic tunneling junction (MTJ) and a second MTJ on a substrate; forming a first top electrode on the first MTJ and a second top electrode on the second MTJ; forming a cap layer on the first MTJ and the second MTJ; forming a passivation layer on the cap layer; removing part of the passivation layer to form a recess between the first MTJ and the second MTJ; forming an anti-reflective layer on the passivation layer and filling the recess; and removing the anti-reflective layer, the passivation layer, and the cap layer to form a first contact hole.
Abstract:
A method for fabricating semiconductor device includes the steps of: forming a first magnetic tunneling junction (MTJ) and a second MTJ on a substrate; forming a first top electrode on the first MTJ and a second top electrode on the second MTJ; forming a cap layer on the first MTJ and the second MTJ; forming a passivation layer on the cap layer; removing part of the passivation layer to form a recess between the first MTJ and the second MTJ; forming an anti-reflective layer on the passivation layer and filling the recess; and removing the anti-reflective layer, the passivation layer, and the cap layer to form a first contact hole.
Abstract:
The disclosure provides a semiconductor memory device including a substrate having a memory cell region and an alignment mark region; a dielectric layer covering the memory cell region and the alignment mark region; conductive vias in the dielectric layer within the memory cell region; an alignment mark trench in the dielectric layer within the alignment mark region; and storage structures disposed on the conductive vias, respectively. Each of the storage structures includes a bottom electrode defined from a bottom electrode metal layer, a magnetic tunnel junction (MTJ) structure defined from an MTJ layer, and a top electrode. A residual metal stack is left in the alignment mark trench. The residual metal stack includes a portion of the bottom electrode metal layer and a portion of the MTJ layer.
Abstract:
A semiconductor structure is provided in the present invention, including a substrate having a device region and an alignment mark region defined thereon, a dielectric layer disposed on the substrate, a conductive via formed in the dielectric layer on the device region, a first trench formed in the dielectric layer on the alignment mark, a plurality of second trenches formed in the dielectric layer directly under the first trench and exposed from a bottom surface of the first trench, and a memory stacked structure disposed on the dielectric layer, directly covering a top surface of the conductive via and filling into the first trench and the second trench.
Abstract:
A semiconductor process is described. A silicon-phosphorus (SiP) epitaxial layer is formed serving as a source/drain (S/D) region. A crystalline metal silicide layer is formed directly on the SiP epitaxial layer and thus prevents oxidation of the SiP epitaxial layer. A contact plug is formed over the crystalline metal silicide layer.
Abstract:
A method of forming a contact structure is provided. A silicon-containing substrate is provided with a composite dielectric layer formed thereon. An opening penetrates through the composite dielectric layer and exposes a portion of the source/drain region. A titanium nitride layer is formed in the opening, and the titanium nitride layer is in contact with the exposed portion of the source/drain region. The titanium nitride layer is annealed, so that the bottom portion of the titanium nitride layer is partially transformed into a titanium silicide layer. A conductive layer is formed to fill up the opening.
Abstract:
An overlap mark set is provided to have at least a first and a second overlap marks both of which are located at the same pattern layer. The first overlap mark includes at least two sets of X-directional linear patterns, having a preset offset a1 therebetween; and at least two sets of Y-directional linear patterns, having the preset offset a1 therebetween. The second overlap mark includes at least two sets of X-directional linear patterns, having a preset offset b1 therebetween; and at least two sets of Y-directional linear patterns, having the preset offset b1 therebetween. The preset offsets a1 and b1 are not equal.