Abstract:
Exemplary methods, apparatuses, and systems create a parent snapshot of the parent virtual disk in response to receiving a request to clone a parent virtual machine. A clone virtual machine is created with a clone redo log file and clone virtual disk. Copying of the parent virtual disk to the clone virtual disk is initiated. A first active link from the clone redo log file to the parent snapshot is created to provide the clone virtual machine access to the parent snapshot. In response to determining that the copying of the parent virtual disk to the clone virtual disk is complete, the first active link is removed and a second active link is created from the clone redo log file to the clone virtual disk or to a snapshot of the clone virtual disk.
Abstract:
Techniques for selectively utilizing memory available in a redundant host system of a cluster are described. In one embodiment, a cluster of host systems, with at least one redundant host system, with each host system having a plurality of virtual machines with associated virtual machine (VM) reservation memory is provided. A portion of a data store is used to store a base file, the base file accessed by all the plurality of virtual machines. A portion of the memory available in the redundant host system is assigned as spare VM reservation memory. A copy of the base file is selectively stored in the spare VM reservation memory for access by all the plurality of virtual machines.
Abstract:
Techniques for placing a first storage network device into maintenance mode in a virtualized computing environment in which each data store is connected to at least one host computing system via a storage network device are described. In one embodiment, a first data store having an active input/output (I/O) path to a first host computing system via the first storage network device is identified. Further, migration of virtual machine disks (VMDKs) on the first data store and/or migration of workloads running on the first host computing system are recommended such that the VMDKs can be accessed by the workloads via any other storage network device.
Abstract:
In one embodiment, a method includes coupling a plurality of virtual machines to a plurality of peripheral devices via a central switch where the plurality of virtual machines are running a plurality of virtual desktops. A data packet is received from a virtual machine where the data packet is received in a first format compatible with a virtual desktop being run in the virtual machine. The central switch determines a peripheral device that corresponds to the virtual desktop. Then, the central switch generates a peripheral signal from the data packet that is configured to be sent to the peripheral device. The peripheral signal is in a second format compatible with the peripheral device and different from the first format. The peripheral signal is sent to the peripheral device where the peripheral device can process the peripheral signal for the virtual desktop being run in the virtual machine.
Abstract:
The present disclosure is related to dynamically control log level in a datacenter. An example machine-readable medium may store instructions executable by a processing resource to receive a stream of log data from a plurality of end devices via associated logging interfaces in the virtual datacenter. Further, the received stream of log data is dynamically analyzed. Furthermore, the log level of any one or more of the plurality of end devices is then controlled based on the analysis. The log data associated with the controlled log level of any one of the one or more of plurality of end devices is then received, which can then assist in debugging and troubleshooting.
Abstract:
In case of network isolation of a host executing one or more virtual machines, the state of the one of more virtual machines is saved using a variety of isolation response mechanisms. Isolation responses may include a live migration to another host using a shared storage system connected to both hosts, a virtual machine suspend and resume operation, and a snapshot reversion operation. The execution state of the virtual machine(s) running on the isolated host, which includes the state of the guest operating system and any running applications, are maintained in the other host, even after host isolation has occurred.
Abstract:
Techniques for placement of a virtual machine (VM) on a host computing system in a virtualized computing environment are disclosed. In one embodiment, a first network device having network load less than a threshold value is determined. Further, the VM is placed on the host computing system coupled to the first network device. In this case, the host computing system transmits and receives network traffic associated with the VM via the first network device.
Abstract:
In an example, a method of replication between computing systems includes replicating virtual machine files from primary storage in a primary computing system to secondary storage in a secondary computing system. The virtual machine files implement a plurality of virtual machines in the primary computing system and a plurality of replica virtual machines in the secondary computing system. The method further includes replicating configuration data, from virtualization software in the primary computing system to secondary virtualization software installed on a host computer in the secondary computing system, through a platform management system in the host computer while the host computer is in a low-power state.
Abstract:
Techniques for placing a first network device into maintenance mode are described. In one embodiment, a first host computing system coupled to the first network device is identified. The first host computing system executes a workload that transmits and receives network traffic via the first network device. If the first host computing system is not coupled to any other network device, the network traffic to the first network device is quiesced by initiating migration of the workload to a second host computing system coupled to any other network device. If the first host computing system is coupled to a second network device, the network traffic to the first network device is quiesced by instructing a virtual switch of the first host computing system to route the network traffic between the workload and the second network device, and cease routing the network traffic between the workload and the first network device.
Abstract:
Techniques for providing a hyper-converged computing device with an integrated central virtualization switch is disclosed. In one embodiment, the hyper-converged computing device includes a server comprising at least one central processing unit (CPU), memory, and storage, a central virtualization switch integrated with the server, a virtualization application to manage virtual machines hosted by the hyper-converged computing device, and a hyper-converged application to manage the hyper-converged computing device. The hyper-converged application is to appropriately route data associated with an exclusive communication between the virtual machines and peripheral devices through the central virtualization switch that is integrated with the server.