Abstract:
Provided is a method for recovering a polycarbonate resin from a discarded optical disk and/or a recovered optical disk, which has a polycarbonate resin substrate. The following process steps (I) and (II) are applied to a chemically treated product, which is obtained by crushing a discarded optical disk and/or a recovered optical disk, and chemically treating the resulting crushed product. Process step (I): a step containing (a) removing a magnetic metal foreign matter with a magnet, and (b) identifying a colored foreign matter with an optical camera, and removing the colored foreign matter. Process step (II): a step containing detecting the presence of a metal foreign matter with a metal foreign matter detector, and removing a resin containing the metal foreign matter.
Abstract:
A novel design of filters for removing iron rust particulates and other polymeric sludge from refinery and chemical process streams that are paramagnetic in nature is provided. The performance of these filters is greatly enhanced by the presence of the magnetic field induced by magnets. Basically, the filter comprises a high-pressure vessel with means to support the plurality of magnets in the form of bars or plates that are encased in stainless steel tubes or columns. Filters with various configurations are disclosed for accommodating the removal of contaminants from the process streams of different industries, with high efficiency for contaminants removal, simple construction, low operational and maintenance costs, and low hazardous operation.
Abstract:
A method of sorting particulate matter comprises creating an unconstrained monolayer feed stream of particulate matter moving with an initial first trajectory in a gaseous medium, and subjecting the monolayer feed stream while in the gaseous medium to a magnetic field of sufficient strength to influence the trajectory of at least some particles in the feed stream to cause a spread of particle trajectories from the first trajectory. The particles are subsequently sorted and/or collected on the basis of their trajectories
Abstract:
What is presented is a permanent magnet drum separator for removal of a ferrous fraction from a material stream comprising a pickup magnet that is a rare earth permanent magnet that can be moved within the drum separator. The drum separator comprises a rotatable outer shell having tubular shape with a circular cross section. The drum separator includes a carry magnet that is positioned at a fixed location within the rotatable outer shell near the inside circumference of the rotatable outer shell. The pickup magnet is positioned on a hinge plate within the rotatable outer shell. The hinge plate has a first end attached to a hinge and a second end attached to a movable element. The hinge is positioned at a fixed location within the rotatable outer shell near the inside circumference of said rotatable outer shell. The movable element is able to move the pickup magnet about the hinge to vary the distance between the pickup magnet and the inside circumference of the rotatable outer shell.
Abstract:
A fuel conditioner is provided for improving fuel combustibility and reducing emissions into the environment. The fuel conditioner may be placed in-line in a fuel delivery system for internal combustion engines and may include the following components: a first housing defining a sealed chamber, a fuel inlet in fluid communication with the sealed chamber, a second housing disposed within the sealed chamber, a magnet disposed in the second housing, a fuel outlet in fluid communication with the sealed chamber, and a flow path in the sealed chamber for flow of the liquid fuel between the fuel inlet and the fuel outlet. Along its flow path, the liquid fuel is split apart and passes through magnetic fields due to one or more magnets inside the second housing to condition the fuel to improve fuel combustibility and reduce toxic emissions.
Abstract:
This invention relates to apparatus for carrying out continuous or batch centrifugation solid-liquid separation processes in which the solid-liquid mixture is subjected to magnetic field gradients and centrifugation.
Abstract:
The present invention relates to a device for separating solid materials on the basis of a mutual difference in density, wherein the materials to be separated are brought into contact with a magnetic fluid across which fluid a density gradient is generated by means of a magnetic field such that fractions of solid materials of different densities are obtained, said device being provided with a magnet, an inflow chamber, a separation chamber, and means for discharging fractions of solid materials of different densities in separation, wherein the magnetic fluid flows from the inflow chamber to the separation chamber, wherein the magnet is arranged above the separation chamber, and wherein at least one duct for the supply of the solid materials to be separated is located below the inflow chamber and the separation chamber and encloses an angle with the inflow chamber and the separation chamber.
Abstract:
What is presented is a permanent magnet drum separator for removal of a ferrous fraction from a material stream comprising a pickup magnet that is a rare earth permanent magnet that can be moved within the drum separator. The drum separator comprises a rotatable outer shell having tubular shape with a circular cross section. The drum separator includes a carry magnet that is positioned at a fixed location within the rotatable outer shell near the inside circumference of the rotatable outer shell. The pickup magnet is positioned on a hinge plate within the rotatable outer shell. The hinge plate has a first end attached to a hinge and a second end attached to a movable element. The hinge is positioned at a fixed location within the rotatable outer shell near the inside circumference of said rotatable outer shell. The movable element is able to move the pickup magnet about the hinge to vary the distance between the pickup magnet and the inside circumference of the rotatable outer shell.
Abstract:
A process of sorting metallic single wall carbon nanotubes (SWNTs) from semiconducting types by disposing the SWNTs in a dilute fluid, exposing the SWNTs to a dipole-inducing magnetic field which induces magnetic dipoles in the SWNTs so that a strength of a dipole depends on a conductivity of the SWNT containing the dipole, orienting the metallic SWNTs, and exposing the SWNTs to a magnetic field with a spatial gradient so that the oriented metallic SWNTs drift in the magnetic field gradient and thereby becomes spatially separated from the semiconducting SWNTs. An apparatus for the process of sorting SWNTs is disclosed.
Abstract:
There are provided devices, systems and processes to treat slurries that include magnetic and nonmagnetic particles suspended in water in such a fashion as to separate certain valuable elements and/or minerals from less valuable minerals or elements. A high intensity magnetic separator includes at least one large rotatable turntable that defines at least one circular channel therethrough in which a matrix material is positioned. The turntable is configured to rotate in a generally horizontal plane about a generally vertical virtual axis, causing the at least one circular channel to rotate through a plurality of intermittent magnetic and nonmagnetic zones generated by a plurality of permanent magnet members. A treatment slurry is directed into the channel or channels in one or more of the magnetic zones as the turntable rotates. A tailings fraction passes through the channel or channels in a generally downward direction in the magnetic zones and is collected in tailings launders. Magnetic particles are attracted to the matrix material in the magnetic zones and remain in the channel until it passes into an adjacent nonmagnetic zone, where the magnetic particles are washed form the channel into concentrate launders.