Abstract:
A method for the flotation of sulfide ores is disclosed. The method comprises contacting the sulfide ores with a composition comprising at least one compound of the formula where R1, R2 and R3 independently of one another are alkyl groups having 1 to 18 carbon atoms, alkenyl groups having 2 to 18 carbon atoms, aryl groups having 6 to 10 carbon atoms, or alkylaryl groups having 7 to 10 carbon atoms.
Abstract:
The present invention relates to a flotation reagent and a process for the flotation of sulfidic ores. The process comprises contacting the sulfidic ores with a combination of thionocarbamates and mercaptobenzothiazoles to improve the flotation of sulfidic ores, particularly the flotation of copper ore when the copper ore is associated with molybdenum and/or gold. The flotation reagent comprises a combination of compounds of formula (1) and formula (2) where R1 and R2 independently of one another are alkyl groups having 1 to 18 carbon atoms, and R3 and R4 independently of one another are hydrogen or C1–C6-alkyl, and M is hydrogen or an alkali metal, and (1) and (2) are in a weight ratio of (1):(2) of 95:5 to 75:25.
Abstract:
A continuous flotation process and apparatus for iron-containing sulphides in ores and concentrates of ores are disclosed. The process includes adjusting the pH of an aqueous pulp of the ores or concentrates of the ores to be in the range of 6.5-8.5 and thereafter adding a reducing agent to modify an iron hydroxide film on the surface of iron-containing sulphides in the ores or ore concentrates to enable adsorption of a collector onto iron-containing sulphides. The process also includes adding the collector to the pulp prior to, during, or after adding the reducing agent. The process also includes aerating the pulp to increase the pulp potential to a level sufficient to allow collector adsorption onto the iron-containing sulphides and thereafter bubbling gas through the pulp and subjecting the aqueous pulp to froth flotation to produce a froth containing said sulphide containing minerals.
Abstract:
Methods of increasing the rate of separating hydrophobic and hydrophilic particles by flotation have been developed. They are based on using appropriate reagents to enhance the hydrophobicity of the particles to be floated, so that they can be more readily collected by the air bubbles used in flotation. The hydrophobicity-enhancing reagents include low HLB surfactants, naturally occurring lipids, modified lipids, and hydrophobic polymers. These methods can greatly increase the rate of flotation for the particles that are usually difficult to float, such as ultrafine particles, coarse particles, middlings, and the particles that do not readily float in the water containing large amounts of ions derived from the particles. In addition, new collectors for the flotation of phosphate minerals are disclosed.
Abstract:
The invention relates to a hydroxamate composition for collection of minerals by froth flotation, the composition including an aqueous mixture of hydroxamate wherein the pH of the composition is at least 11 and a method of collecting mineral values from an aqueous ore slurry by froth flotation.
Abstract:
Methods of increasing the rate of separating hydrophobic and hydrophilic particles by flotation have been developed. They are based on using appropriate reagents to enhance the hydrophobicity of the particles to be floated, so that they can be more readily collected by the air bubbles used in flotation. The hydrophobicity-enhancing reagents include low HLB surfactants, naturally occurring lipids, modified lipids, and hydrophobic polymers. These methods can greatly increase the rate of flotation for the particles that are usually difficult to float, such as ultrafine particles, coarse particles, middlings, and the particles that do not readily float in the water containing large amounts of ions derived from the particles. In addition, new collectos for the flotation of phosphate minerals are disclosed.
Abstract:
Froth flotation processes, useful for beneficiating base metal mineral values from metal sulfide ore, utilize a collector comprising N-butoxycarbonyl-O-butylthionocarbamate.
Abstract:
Froth flotation processes, useful for beneficiating base metal mineral values from metal sulfide ore, utilize a collector comprising an N-butoxycarbonyl-O-alkylthionocarbamate selected from the group consisting of N-butoxycarbonyl-O-methylthionocarbamate, N-butoxycarbonyl-O-ethylthionocarbamate, N-butoxycarbonyl-O-propylthiononocarbamate, N-butoxycarbonyl-O-butylthionocarbamate, N-butoxycarbonyl-O-pentylthionocarbamate, and N-butoxycarbonyl-O-hexylthionocarbamate.
Abstract:
The invention relates to a flotation agent for phosphate ore, comprising a fatty acid as collector and alkoxylated alkylphenols as dispersing agents, characterized in that the alkylphenols are composed of a) 8 to 20% by weight of one or more dialkylphenols having alkyl radicals from 8 to 12 carbon atoms b) 80 to 92% by weight of one or more monoalkylphenols having alkyl radicals from 8 to 12 carbon atoms, which have been alkoxylated with 2 to 6 mol of ethylene oxide.
Abstract:
A method is disclosed for separating phosphate minerals from a mineral mixture, particularly from high-dolomite containing phosphate ores. The method involves conditioning the mineral mixture by contacting in an aqueous in environment with a collector in an amount sufficient for promoting flotation of phosphate minerals. The collector is a hydroxamate compound of the formula; wherein R is generally hydrophobic and chosen such that the collector has solubility or dispersion properties it can be distributed in the mineral mixture, typically an alkyl, aryl, or alkylaryl group having 6 to 18 carbon atoms. M is a cation, typically hydrogen, an alkali metal or an alkaline earth metal. Preferably, the collector also comprises an alcohol of the formula, R′—OH wherein R′ is generally hydrophobic and chosen such that the collector has solubility or dispersion properties so that it can be distributed in the mineral mixture, typically an alkyl, aryl, or alkylaryl group having 6 to 18 carbon atoms.