Abstract:
Embodiments described herein relate to methods and apparatuses for controlling an operation of a vibrational output system and/or an operation of an input sensor system, wherein the controller is for use in a device comprising the vibrational output system and the input sensor system. A controller comprises an input configured to receive an indication of activation or de-activation of an output of the vibrational output system; and an adjustment module configured to adjust the operation of the vibrational output system and/or the operation of the input sensor system based on the indication to reduce an interference expected to be caused by the output of the vibrational output system on the input sensory system.
Abstract:
A plurality of micro-electro-mechanical system (MEMS) transducers in a phased array are coupled to a flexible substrate using carbon nanotubes (CNTs) for conformal ultrasound scanning. Each transducer comprises a cantilever, magnetic material deposited on the cantilever, and a solenoid positioned relative to the magnetic material. The carbon nanotubes are grown on the cantilever and mechanically couple the transducer to one side of the flexible substrate. The other side of the flexible substrate is applied to a surface of a part under inspection, and the transducers are electrically connected to a processer to cause movement of the cantilevers when the solenoids are energized by the processor. The movement of the cantilevers results in movement of the carbon nanotubes, which imparts a force to the flexible substrate that results in ultrasound waves, which permeate the part. Returns from the ultrasound waves are interpreted by the processor to generate images of the part.
Abstract:
The present disclosure discloses a linear motor system. The system includes a linear motor and a drive module which drives the linear motor to vibrate. The linear motor includes a housing having an accommodating space, a vibrating module accommodated in the accommodating space and an elastic part for supporting the vibrating module in the accommodating space elastically. The drive module includes a drive unit for driving the vibrating module to vibrate and a tuning unit for regulating the resonant frequency of the vibrating module. Moreover, the linear motor system of the present disclosure can meet vibration requirements of various application programs and scenes.
Abstract:
This disclosure is related to marine seismic sources, for example marine seismic sources known in the art as benders. Some embodiments of this disclosure use magnetic reluctance forces to produce seismic energy. For example, pole pieces may be attached to one or more plates of a marine seismic source, and a wire coil may induce an attractive force between the pole pieces to cause deformation of the plates to produce seismic energy. Such marine seismic sources may be components of a marine seismic survey system, and may be used in a method of marine seismic surveying. Methods of making marine seismic sources are also disclosed.
Abstract:
An apparatus for controlling a vibration includes a vibration transfer unit; at least one pair of oscillators disposed spaced apart from each other in the vibration transfer unit, and configured to generate a vibration in the vibration transfer unit; at least one driver configured to selectively drive the at least one pair of oscillators; and a controller configured to control the at least one driver and thereby move a center of the vibration within the vibration transfer unit so as to create a moving vibration sensation.
Abstract:
A switching circuit for an electromagnetic source for generating acoustic waves has at least one first capacitor connected in parallel with a series circuit formed by a second capacitor and an electronic switch. The switching circuit is connected to a coil of the electromagnetic source, and the first and second capacitors are switched so as to both discharged into the coil, thereby supplying the coil with current.
Abstract:
An adaptive intelligent electronic horn (100) comprises a mechanical soniferous apparatus (112), an electromagnetic coil (106), a driver circuit (104) and an oscillating circuit (102). A sensor (110) is provided between the mechanical soniferous apparatus (112) and the oscillating circuit (102). An on-off ratio adjusting circuit (108) is provided at the input end of the oscillating circuit (102). The sensor (110) measures the oscillation frequency of the mechanical soniferous apparatus (112) and feedbacks the measured oscillation frequency signal to the oscillating circuit (102). The on-off ratio adjusting circuit (108) controls a pulse width of an oscillation signal from the oscillating circuit (102) based on a voltage of power supply and/or an ambient temperature. The oscillating circuit (102) outputs corresponding oscillation signal to the driver circuit (104) based on the oscillation frequency signal received from the sensor (110) and/or the control signal from the on-off ratio adjusting circuit (108).
Abstract:
A vibration source driving device that realizes various vibration functions on portable telephones. The vibration source driving device includes a sound source for generating musical tone signals in response to music data. A vibration source to generate vibration, a driver to drive the vibration and a control circuit are further included such that the vibration source may be driven in synchronization with the rhythm signal within the music data.
Abstract:
A vibration source driving device that realizes various vibration functions on portable telephones. The vibration source driving device includes a sound source for generating musical tone signals in response to music data. A vibration source to generate vibration, a driver to drive the vibration and a control circuit are further included such that the vibration source may be driven in synchronization with the rhythm signal within the music data.
Abstract:
This invention includes a square wave signal generating circuit 20 for generating a square wave signal whose frequency changes; a MOS transistor 12 which is turned on/off on the basis of the square wave signal to supply a driving current to a vibrator 14; and a frequency shift detecting circuit 24 for detecting a frequency shift between the square wave signal from the square wave generating circuit and a resonance frequency of the vibrator. The shift in the frequency generated by the square wave generating circuit is trimmed by a signal detected by the frequency shift detecting circuit.