Abstract:
An improved method of reducing a mixed metal oxide composition comprising oxides of nickel, cobalt, copper and iron in a hydrogen atmosphere to produce a mixture of the respective metals, the improvement wherein the atmosphere further comprises water vapour at a concentration, temperature and time to effect selective reduction of the oxides of nickel cobalt and copper relative to the iron oxide to produce the metallic mixture having a reduced ratio of metallic iron relative to metallic nickel, cobalt and copper.
Abstract:
A titanium based carbonitride alloy contains Ti, Nb, W, C, N and Co. The alloy also contains, in addition to Ti, Co with only impurity levels of Ni and Fe, 4-7 at % Nb, 3-8 at % W and has a C/(CnullN) ratio of 0.50-0.75. The Co content is 9-
Abstract:
The present invention relates to a method for manufacturing a sintered body of carbonitride alloy with titanium as the main component and cobalt as the binder phase and which does not have any compositional gradients or center porosity concentration after sintering. This is achieved by processing the material in a specific manner to obtain a lower melting point of the liquid phase in the interior of the body than in the surface while balancing the gas atmosphere outside the body with the alloy composition during all stages of the liquid phase sintering.
Abstract:
There are provided reactive metal powder in-flight heat treatment processes. For example, such processes comprise providing a reactive metal powder; and contacting the reactive metal powder with at least one additive gas while carrying out said in-flight heat treatment process, thereby obtaining a raw reactive metal powder.
Abstract:
In one aspect, methods of milling carbide are described herein. A method of milling carbide comprises placing a particulate composition comprising carbide in a vessel containing milling media and placing an additive in the vessel, the additive undergoing evaporation or sublimation to provide a non-oxidative atmosphere in the vessel. The carbide particles are comminuted with the milling media in the non-oxidative atmosphere.
Abstract:
Novel methods for the production of iron, silicon, and magnesium metal from extraterrestrial and terrestrial resources are described. The methods employ processing steps including metal oxide reduction using carbon monoxide, carbon, hydrogen, and methane. Methods to prepare, regenerate, and recycle reductants to minimize mining and purchase of fresh materials and to minimize carbon emissions are included.
Abstract:
A dielectric barrier discharge (DBD) plasma apparatus for synthesizing metal particles is provided. The DBD plasma apparatus includes an electrolyte vessel for receiving an electrolyte solution comprising metal ions; an electrode spaced-apart from the electrolyte vessel; a dielectric barrier interposed between the electrolyte vessel and the electrode such that, when the electrolyte solution is present in the electrolyte vessel, the dielectric barrier and an upper surface of the electrolyte solution are spaced-apart from each other and define a discharge area therebetween; and gas inlet and outlet ports in fluid communication with the discharge area such that supplying gas in the discharge area while applying an electrical potential difference between the electrode and the electrolyte solution cause a plasma to be produced onto the electrolyte solution, the plasma interacting with the metal ions and synthesizing metal particles. A method for synthesizing metal particles using a DBD plasma apparatus is also provided.
Abstract:
A sputtering target, which has a component composition including: 30.0-67.0 atomic % of Ga; and the Cu balance containing inevitable impurities, wherein the sputtering target is a sintered material having a structure in which θ phases made of Cu—Ga alloy are dispersed in a matrix of the γ phases made of Cu—Ga alloy, is provided.
Abstract:
A method of fabricating a metal cellular structure includes providing a sol-gel that is a colloid dispersed in a solvent, the colloid including metal-containing regions bound together by polymeric ligands, removing the solvent from the gel using supercritical drying to produce a dry gel of the metal-containing regions bound together by the polymeric ligands, and thermally converting the dry gel to a cellular structure with a coating in at least one step using phase separation of at least two insoluble elements. Also disclosed is a metal cellular structure including interconnected metal ligaments having a cellular structure and a carbon-containing coating around the metal ligaments.
Abstract:
Provided is a method for manufacturing iron nuggets by which reduced iron obtained by heating and reducing agglomerates, or iron nuggets obtained by melting and aggregating the reduced iron can be prevented from reoxidation inside a movable hearth heating furnace and quality of the reduced iron can be improved. The method involves charging and heating agglomerates including iron oxide and a carbonaceous reducing agent on a hearth of a movable hearth heating furnace, reducing and melting the iron oxide in the agglomerates, and then discharging obtained iron nuggets to the outside of the furnace and recovering the iron nuggets. The agglomerates have a coating layer, including a fluid carbonaceous material, on the surface.