Abstract:
The present invention relates to an MCF with a structure for enabling an alignment work with higher accuracy. The MCF has a plurality of cores and a cladding. An outer peripheral shape of the cladding in a cross section of the MCF is comprised of a circumferential portion forming a circumference coincident with an outer periphery of the MCF, and a cut portion. The cut portion has a bottom portion and two contact portions provided on both sides of the bottom portion and projecting more than the bottom portion. When a side face of the MCF is viewed, the two contact portions have flattened faces and the flattened faces of the two contact portions extend along a longitudinal direction of the MCF with the bottom portion in between.
Abstract:
Accurate temperature measurement during manufacturing a vitreous silica crucible is enabled. The present invention provides an apparatus for manufacturing a vitreous silica crucible including: a mold for forming a silica powder layer by supplying silica powder therein; an are discharge unit having carbon electrodes and a power supply unit and for heating and fusing the silica powder layer by arc discharge; and a temperature measurement unit for measuring temperature of a fused portion in the mold, wherein the temperature measurement unit is an radiation thermometer for measuring temperature by detecting radiation energy of a wavelength of 4.8 to 5.2 μm.
Abstract:
An inexpensive low-attenuation optical fiber 1 suitable for use as an optical transmission line in an optical access network is a silica based glass optical fiber and includes a core 11 including the center axis, an optical cladding 12 surrounding the core, and a jacket 13 surrounding the optical cladding. The core contains GeO2 and has a relative refractive index difference Δcore, based on the optical cladding, greater than or equal to 0.35% and less than or equal to 0.50% and has a refractive index volume v greater than or equal to 0.045 μm2 and less than or equal to 0.095 μm2. The jacket has a relative refractive index difference ΔJ greater than or equal to 0.03% and less than or equal to 0.20%. Glass constituting the core has a fictive temperature higher than or equal to 1400° C. and lower than or equal to 1590° C. Residual stress in the core is compressive stress that has an absolute value greater than or equal to 5 MPa.
Abstract:
An inexpensive low-attenuation optical fiber 1 suitable for use as an optical transmission line in an optical access network is a silica based glass optical fiber and includes a core 11 including the center axis, an optical cladding 12 surrounding the core, and a jacket 13 surrounding the optical cladding. The core contains GeO2 and has a relative refractive index difference Δcore, based on the optical cladding, greater than or equal to 0.35% and less than or equal to 0.50% and has a refractive index volume v greater than or equal to 0.045 μm2 and less than or equal to 0.095 μm2. The jacket has a relative refractive index difference ΔJ greater than or equal to 0.03% and less than or equal to 0.20%. Glass constituting the core has a fictive temperature higher than or equal to 1400° C. and lower than or equal to 1590° C. Residual stress in the core is compressive stress that has an absolute value greater than or equal to 5 MPa.
Abstract:
A single-mode optical fiber includes a central core surrounded by an outer cladding. The optical fiber includes at least first and second depressed claddings positioned between the central core and the outer cladding. The central core typically has a radius of between about 3.5 microns and 5.5 microns and a refractive-index difference with the outer cladding of between about −1×10−3 and 3×10−3. The first depressed cladding typically has an outer radius of between about 9 microns and 15 microns and a refractive-index difference with the outer cladding of between about −5.5×10−3 and −2.5×10−3. The second depressed cladding typically has an outer radius of between about 38 microns and 42 microns and a refractive-index difference with the first depressed cladding of between about −0.5×10−3 and 0.5×10−3.
Abstract:
The present invention, even in the case where the size of a preform itself is increased, enables production of a multi-core optical fiber in which cores are arranged with high accuracy. A plurality of core members each being rod-like are fixed by an array fixing member while a relative positional relation of the plurality of core members is fixed, and the plurality of core members and a cladding member are integrated into one piece, and thus a preform is obtained. By drawing the obtained preform, a multi-core optical fiber in which core arrangement is controlled with high accuracy is obtained.
Abstract:
A burner for production of inorganic spheroidized particles according to the present invention includes a first raw material supply path (1A) through which a raw material powder is supplied together with a carrier gas; a fuel supply path (4A) disposed around the outer circumference of the first raw material supply path (1A), through which a fuel gas is supplied; a primary oxygen supply path (5A) disposed around the outer circumference of the fuel supply path (4A), through which an oxygen-containing gas is supplied; a second raw material supply path (6A) disposed around the outer circumference of the primary oxygen supply path (5A), through which a raw material powder is supplied together with a carrier gas; and a secondary oxygen supply path (7A) disposed around the outer circumference of the second raw material supply path (6A), through which an oxygen-containing gas is supplied.
Abstract:
The present invention relates to an optical waveguide manufacturing method, which excels in mass productivity of a planar optical waveguide. In an aggregating step, plural members (20), which have a rod (21) or pipe (22) shape respectively, are arranged and bundled so as to constitute a substantially similar figure to at least a part of a desired waveguide pattern on a cross-section perpendicular to the longitudinal direction of the members (20). The plural members (20) bundled in the aggregating step are, after being softened by heating, elongated in a longitudinal direction thereof in an elongating step, whereby an elongated body is formed. The elongated body formed in the elongating step is cut along a plane perpendicular to the longitudinal direction of the elongated body in a cutting step. By these steps, a planar optical waveguide, on which a waveguide pattern based on a micro-structure is formed, is manufactured.
Abstract:
Methods and apparatus relate to optical fibers suitable for use in sensing applications exposed to radiation environments. The fibers include a core of pure silica or chlorine doped silica surrounded by a fluorinated silica cladding. These glasses for the core and cladding utilize dopants that resist radiation-induced attenuation. A two step process for forming the cladding can achieve necessary concentrations of the fluorine by performing a soot deposition process in a different environment from a consolidation process where the soot is sintered into a glass. Concentration of fluorine doped into the cladding layer enables obtaining a numerical aperture that confines a mono-mode of the fiber to resist bend-induced attenuation. Dimensions of the fiber further facilitate bending ability of the fiber.
Abstract:
Provided is a quartz glass manufacturing method that involves using one or more burners, supplying hydrogen and oxygen to the one or more burners to generate an oxyhydrogen flame, introducing a silicide into the oxyhydrogen flame, forming a porous base material by depositing silicon dioxide generated from a flame hydrolysis reaction with the silicide, and heating and sintering the porous base material to form transparent glass, the method comprising supplying hydrogen that is stored or made at a normal temperature to the one or more burners; controlling a hydrogen flow rate using a measurement apparatus or control apparatus that performs measurement based on heat capacity of a gas; vaporizing liquid hydrogen stored in a low-temperature storage chamber, and supplying the vaporized liquid hydrogen to the one or more burners as backup hydrogen; switching from the hydrogen to the backup hydrogen; and when switching, adjusting the hydrogen flow rate to a value obtained by multiplying the hydrogen flow rate immediately after switching by a predetermined correction coefficient.