Abstract:
Methods provide a polymer foam having high bonding strength and improved compressive hardness characteristics wherein the polymer foam comprising cavities formed by microballoons, and also 2 to 20 vol. %, based on the total volume of the polymer foam, of cavities surrounded by the polymer foam matrix.
Abstract:
The invention provides methods for making silicone structures, drug delivery devices and active pharmaceutical agent delivery systems and medical devices containing one or more active pharmaceutical ingredients. The invention provides silicone structures, drug delivery devices and active pharmaceutical agent delivery systems containing one or more active pharmaceutical ingredients. The silicones used in the invention are foaming silicones, which generate void-forming gases which completely volatilize during curing. The silicone structures, drug delivery devices and active pharmaceutical agent delivery systems can be of any shape or size, and are porous, and are capable of being loaded with high doses of the desired drug or drugs. The active pharmaceutical ingredients can be incorporated into the silicone prior to curing, or subsequent to curing, via a soaking process. Additionally, the rate of drug release from the silicone structures, drug delivery devices and active pharmaceutical agent delivery systems of the invention can be controlled by a post-curing membrane or sheath surrounding the structures. Further provided are methods of treating disease in mammals, preventing the onset of disease in mammals and lessening the severity of disease in mammals, by implanting one or more structures, drug delivery devices and active pharmaceutical agent delivery systems into the mammal.
Abstract:
A process for production of expanded thermoplastic elastomer beads in the presence of a gaseous medium that surrounds thermoplastic elastomer beads. The process comprises a) an impregnating step, in which the gaseous medium has an impregnating temperature Ta, and the absolute pressure of the gaseous medium is greater than ambient pressure, the thermoplastic elastomer beads impregnated with a blowing agent, b) an expanding step, in which the thermoplastic elastomer beads expand as they are exposed to a pressure reduction at a first expanding temperature Tb, and c) optionally a fusing step, in which the expanded thermoplastic elastomer beads are fused together at a fusing temperature Tc to form at least one shaped part.
Abstract:
The invention relates to a method for the production of porous materials by the expansion of polymer gels and to the porous materials produced by such a method and to a moulded body.
Abstract:
Expandable-polymer-particle material comprising at least one thermoplastic polyurethane (TPU) with Vicat softening point (in accordance with ISO 306/ASO) below 80° C. and from 5 to 95% by weight of at least one polymer obtainable via free-radical polymerization, based on the entirety of TPU and of the polymer obtainable via free-radical polymerization, where the polymer obtainable via free-radical polymerization has been bonded to the TPU in a manner that gives a comb polymer, graft polymer, or copolymer, is suitable for the production of moldings, in particular for use as insulation material.
Abstract:
To provide a urethane foam molded product having high thermal conductivity and electric insulation and a method for producing the same. A urethane foam molded product includes a base material made of a polyurethane foam and composite particles that are blended in the base material and oriented in a mutually connected state, in which each of the composite particles includes a thermally conductive particle made of a non-magnetic body, and a magnetic particle and an insulating inorganic particle that are adhered to the surface of the thermally conductive particle through a binder. A powder of the composite particles can be produced by stirring a powder raw material containing a powder of the thermally conductive particle, a powder of the magnetic particle, a powder of the insulating inorganic particle, and the binder using a stirring granulator.
Abstract:
Provided are compositions comprising a propylene-based elastomer and foamed profiles comprising said compositions. The presence of the propylene-based elastomer can provide foamed profiles with reduced density while maintaining properties including compression set and compression load deflection at a level comparable to those of conventional EPDM foams.
Abstract:
Provided is a urethane resin composition by which an electrically conductive roller which has a higher elasticity than ever and in which an air bubble in an elastic layer is fine can be obtained when the urethane resin composition is used for the elastic layer of the electrically conductive roller, and an electrically conductive roller using the same. The urethane resin composition comprises: a urethane resin having a carboxyl group on a side chain; a cross-linking agent having an epoxy group; and an ester composed of a sugar and an unbranched saturated fatty acid having 16 to 24 carbon atoms as a foaming agent. The saturated fatty acid is preferably a stearic acid. The urethane resin composition preferably further contains a foaming auxiliary. The sugar is preferably a sucrose.
Abstract:
A nanoporous material is disclosed having a plurality of lamellae. Through each lamella is an array of penetrating pores. Adjacent lamellae are spaced apart by an intervening spacing layer. The spacing layer comprises an array of spacing elements integrally formed with and extending between the adjacent lamellae. The spacing layer has interconnected porosity extending within the spacing layer. Such a nanoporous material can be manufactured using block copolymer materials. First, a morphology is formed comprising a three dimensional array of isolated islands in a continuous matrix. The islands are formed of at least one island component of the block copolymer and the matrix is formed of at least one matrix component of the block copolymer. Next, channels are formed in the matrix between at least some of the islands. The island component is then selectively removed to leave the matrix with an array of interconnected pores.
Abstract:
Provided are a silicone rubber sponge that forms an elastic layer of a pressure roller of an image-forming apparatus, and that has a high mechanical strength so as to be used in a high-speed image-forming apparatus or a color image-forming apparatus, and a rubber-covered roller including the silicone rubber sponge. The silicone rubber sponge is produced by mixing expanded resin microballoons with a low-molecular-weight silicone rubber to prepare a compound A, mixing a high-molecular-weight silicone rubber with the compound A to prepare a silicone rubber compound, and heating the silicone rubber compound at a temperature lower than a softening point of the resin microballoons to cure the silicone rubbers.