Abstract:
In a swash plate type compressor, a partition plate member is located in a high pressure chamber of the compressor housing and divides the high pressure chamber into a plurality of small rooms which are communicated in series through a hole formed on the partition member. Each small room in the high pressure chamber and the partition member hole serves to reduce the resonant sound among the noise in a car or the like where the compressor is utilized.
Abstract:
The bottom portion of a swash plate extends into oil in a sump to splash oil onto the remainder of the swash plate and the members connecting the swash plate to pistons. The splashed oil is partially atomized in a portion of the sump above the liquid oil level, from which a passageway leads to an inlet chamber. The passageway extends through radial and thrust bearings for the swash plate drive shaft. The low pressure in the inlet chamber causes atomized oil from the sump to flow through the passageway and lubricate the radial and thrust bearings. A clearance is provided around the pistons to pressurize the sump and increase the flow rate of oil through the passageway.
Abstract:
A refrigerant compressor for effecting successive compression and exhaust strokes by the reciprocating action of a piston driven by an inclined oscillating plate. A rotor chamber communicates with an air inlet chamber through an air inlet silencer chamber while an exhaust chamber communicates with an outlet via an exhaust silencer chamber. The exhaust silencer chamber communicates with a lower sump chamber through a separator so that lubricating oil can be separated in the exhaust chamber and can flow to the sump chamber wherefrom the lubricating oil can flow back to the rotor chamber through a bore in a rotor drive shaft which communicates with the sump chamber through an orifice.
Abstract:
A swash plate includes 34.5 to 43.0 wt % of copper (Cu) and 0.5 to 2.8 wt % of silicon (Si), with a remainder of aluminum (Al) and other inevitable impurities.
Abstract:
A control valve according to one embodiment includes a shaft that transmits the solenoidal force to a valve element. The control valve, in one example, ensures high pressure resistance at a mounting part where a control valve is mounted in a variable displacement compressor. A solenoid includes a bottomed sleeve into which the pressure of refrigerant is introduced, a core secured coaxially to the sleeve, a plunger, contained in the sleeve on its bottom side, which is displaceable integrally with the shaft in a direction of axis line, a first spring that applies the biasing force in a valve opening direction to the shaft, a second spring that applies the biasing force in a valve closing direction to the plunger, and a shaft support member, which is press-fitted such that the shaft support member is secured to an inner wall of the sleeve near its bottom portion. The second spring is set between the shaft support member and the plunger.
Abstract:
A piston drive assembly, including: a housing enclosing each of: a plurality of cylinders, each cylinder having an axis substantially parallel to the axis of the other cylinders; a plurality of pistons, one piston in each cylinder; a wobble plate connected to each of the plurality of pistons; a swashplate rotatably fixed to a drive shaft such that the drive shaft can rotate the swash plate or the swash plate can rotate the drive shaft, wherein the drive shaft extends through the entire length of the housing.
Abstract:
A compressor valve structure permits improvement in durability and volumetric efficiency of a compressor and limits power losses. The width of the base portion of each suction reed valve is shorter than the width of the valve flap. The valve base plate has support portions, receiving portions, main coupling portions, and auxiliary coupling portions. Each support portion receives a central area of corresponding one of the valve flaps. The receiving portion receives a distal area of the valve flap. The main coupling portion extends from the support portion and couples the support portion to the receiving portion. The auxiliary coupling portion extends from the support portion. The suction ports are formed through the valve base plate, while leaving the support portions, the receiving portions, the main coupling portions, and the auxiliary coupling portions.
Abstract:
An oil separation member has a partition member that partitions between a discharge chamber and a discharge passage. A circular ring portion is provided in the partition member in a manner extending toward the discharge passage. An introduction hole that communicates the discharge chamber and the discharge passage with each other is formed in the circular ring portion. The introduction hole extends in a tangential direction to the circular ring portion.
Abstract:
A swash plate compressor 1 includes a swash plate 3 which rotates around a rotary shaft 2, a piston 4 which moves forward and backward in response to the rotation of the swash plate 3 and in which a hemispherical concave sliding surface 4a is formed, and a shoe 5 in which there are formed a flat end surface portion 12 which comes into sliding contact with the swash plate 3 and a spherical surface portion 11 which comes into sliding contact with the sliding surface 4a of the piston 4. A columnar portion 13 is formed between the spherical surface portion 11 and the end surface portion 12 in the shoe 5, and in a boundary area between the columnar portion 13 and the spherical surface portion 11, there is formed a spherical-surface-portion side flange 14 which protrudes radially outward and constitutes the spherical surface portion.
Abstract:
Disclosed is a high-efficiency double-intake air pump, comprising a motor, a connector, a housing and a power assembly, and a lower horseshoe-shaped diaphragm, a lower case of a piston chamber, an upper case of a piston chamber, an upper horseshoe-shaped diaphragm, a disk-shaped air nozzle and an air nozzle protection disk, which are provided in the front end of the housing and are connected in series successively and cooperatively in an axial direction, wherein the front end of the motor is arranged in the rear end of the housing via the connector, the air nozzle protection disk is fixedly connected to the end face of the housing, and the power assembly comprises wave-shaped cam and couples of double-ended pistons. The air pump has an artful and compact design structure, high operation efficiency, and a low noise.