Abstract:
A rapid method for the simultaneous measurement of aggregation or agglutination in plurality of microtest wells or other sample-holding vessels comprises providing a plurality of light beams having discrete focal points adapted to be focused on the contents of a plurality of wells or other vessels and a plurality of photodetectors therefor, directing the light beams through the wells or other vessels and contents thereof, continuously agitating the wells or other vessels and contents thereof with a circular movement effective to permit aggregation or agglutination while preserving the integrity of the material, producing a plurality of output signals from the detectors are proportional to the light absorbencies of the beams as they pass through the wells or other vessels and contents thereof, repeatedly sampling the signals at a predetermined time interval and determining changes in optical densities from the signals obtained after each predetermined time interval by comparing each signal sampled after each predetermined time interval with the first signal sampled for the same microtest well or vessel, whereby any change in optical density which is greater than about 0.05 units is said to indicate that aggregation or agglutination occurred in the well or other vessel. The present method is suitably applied to the measurement of aggregation in platelets.
Abstract:
An optoelectronic device is provided which permits rapid sequential measurement of the optical density of multiple samples. The device employs a plurality of light-emitting diodes (LEDs) as light sources and a plurality of photodiodes as light detectors. In a preferred embodiment, arrays of LEDs paired with photodiodes are adapted to measure the optical density of samples contained in multiwell plastic plates (microplates) conventionally used for immunoassays.
Abstract:
The invention relates to photometric apparatus and method for determining a characteristic of individual ones of a plurality of samples contained within a plurality of sample chambers. The photometric apparatus includes an enclosure; a substantially uniform source of radiation coupled to the enclosure such that a plurality of sample chambers, disposed within the enclosure, are simultaneously illuminated by the uniform source; and apparatus for detecting an amount of radiation which is transmitted through individual ones of the sample chambers, the detecting apparatus having an output signal having a magnitude which is a function of the amount of radiation which is transmitted through an individual one of the sample chambers. The substantially uniform source of radiation may include at least one source of radiation having an output comprising wavelengths within a first range of wavelengths and an optically integrating sphere having a radiation input port coupled to the output of the source of radiation and a radiation output port coupled to the enclosure. The photometric apparatus may further include radiation directing devices interposed between the radiation output port and the plurality of sample chambers for simultaneously directing radiation emanating from the output port into each of the sample chambers. The directed radiation may be either focussed or collimated.