Abstract:
A optical switch comprising: a substrate; and a Mach-Zehnder interferometer circuit provided on the substrate, the Mach-Zehnder interferometer circuit comprising two directional couplers and two optical transmission lines for connecting the directional couplers to each other; elements having Peltier effect provided respectively on the two optical transmission lines; and energizing means for energizing the elements in such a manner that heat is generated from one of the elements with absorption of heat being created in the other element. By virtue of the above construction, the optical switch can realize low power consumption, low extinction ratio, and low crosstalk.
Abstract:
An optic intensity modulator includes a substrate of an optic material that is conductive to light and acoustic waves and has both electrooptic and piezoelectric properties. A pair of associated elongated light waveguides is formed in the substrate, with the waveguides extending substantially coextensively with one another, and being separated from one another by a transverse distance that gradually varies along the courses of the waveguides. Each of two portions of light of substantially identical properties is launched into one of the waveguides for propagation longitudinally thereof, and different phase shifts are induced in the light portions as they propagate in the waveguides by imposing different variable electric fields onto each of the waveguides. The light portions are combined with one another subsequently to their emergence from the waveguides with attendant amplitude modulation of the combined output light due to interference between such phase-shifted light portions.
Abstract:
An apparatus for modulating a beam of light with balanced push-pull mechanism. The apparatus includes a first waveguide comprising a first PN junction on a substrate and a second waveguide comprising a second PN junction on the silicon-on-insulator substrate. The second PN junction is a replica of the first PN junction shifted with a distance. The apparatus further includes a first source electrode and a first ground electrode coupled respectively with the first PN junction and a second source electrode and a second ground electrode coupled respectively with the second PN junction. The apparatus additionally includes a third ground electrode disposed near the second PN junction at the distance away from the second ground electrode, wherein the first ground electrode, the second ground electrode, and the third ground electrode are commonly grounded to have both PN junctions subjected to a substantially same electric field varied in ground-source-ground pattern.
Abstract:
A dual-ring-modulated laser includes a gain medium having a reflective end coupled to an associated gain-medium reflector and an output end, which is coupled to a reflector circuit through an input waveguide to form a lasing cavity. The reflector circuit comprises: a first ring modulator; a second ring modulator; and a shared waveguide that optically couples the first and second ring modulators together. The first and second ring modulators have resonance peaks that are tuned to be offset in alignment from each other to provide an effective reflectance having a flat-top response, which is aligned with an associated lasing cavity mode. The first and second ring modulators are driven in tandem based on the same electrical input signal, whereby the resonance peaks of the first and second ring modulators shift wavelengths in the same direction during modulation, and an effective reflectance stays within the flat-top wavelength range.
Abstract:
Provided is a technique for enabling an α parameter to be approximated to zero. A multiple quantum well structure includes a layer structure including a first barrier layer, an intermediate layer, a well layer, and a second barrier layer. The conduction band energies of the first and second barrier layers, the intermediate layer, and the well layer are larger in this order, and the valence band energies of the intermediate layer, the well layer, and the first and second barrier layers are larger in this order.
Abstract:
Provided is a technique for enabling an a parameter to be approximated to zero. A multiple quantum well structure includes a layer structure including a first barrier layer, an intermediate layer, a well layer, and a second barrier layer. The conduction band energies of the first and second barrier layers, the intermediate layer, and the well layer are larger in this order, and the valence band energies of the intermediate layer, the well layer, and the first and second barrier layers are larger in this order.
Abstract:
A differential TWE MZM includes a differential driver, first and second capacitors, and first and second terminations. The differential driver includes a first differential output and a second differential output that collectively form a differential pair. The first differential output is DC coupled to a first arm optical phase shifter of a TWE MZM. The second differential output is DC coupled to a second arm optical phase shifter of the TWE MZM. The first capacitor AC couples the second differential output to the first arm optical phase shifter. The second capacitor AC couples the first differential output to the second arm optical phase shifter. The first and second terminations are coupled to, respectively, the first or second arm optical phase shifter.
Abstract:
A differential TWE MZM includes a differential driver, first and second capacitors, and first and second terminations. The differential driver includes a first differential output and a second differential output that collectively form a differential pair. The first differential output is DC coupled to a cathode of a first arm optical phase shifter of a TWE MZM. The second differential output is DC coupled to a cathode of a second arm optical phase shifter of the TWE MZM. The first capacitor AC couples the second differential output to an anode of the first arm optical phase shifter. The second capacitor AC couples the first differential output to an anode of the second arm optical phase shifter. The first and second terminations are coupled to the cathode and the anode of, respectively, the first or second arm optical phase shifter.
Abstract:
An optical modulating apparatus includes driver that is mounted on a printed circuit board such that a signal electrode pad and a ground electrode pad of the driver are exposed in an opening of the printed circuit board. An optical modulating device is mounted on the printed circuit board, opposing the driver across the opening. A flexible circuit board is disposed in the opening. An end of a signal terminal of the flexible circuit board is electrically connected to a signal electrode of the optical modulating device. An end of a ground terminal of the flexible circuit board is electrically connected to a ground electrode of the optical modulating device. The other end of the signal terminal is soldered to the signal electrode pad of the driver, and the other end of the ground terminal is soldered to the ground electrode pad of the driver.
Abstract:
A configuration for routing electrical signals between a conventional electronic integrated circuit (IC) and an opto-electronic subassembly is formed as an array of signal paths carrying oppositely-signed signals on adjacent paths to lower the inductance associated with the connection between the IC and the opto-electronic subassembly. The array of signal paths can take the form of an array of wirebonds between the IC and the subassembly, an array of conductive traces formed on the opto-electronic subassembly, or both.