Abstract:
A method for monitoring a patient with a robotic system that includes a remote controlled robot. The robot may include a camera, a monitor and a holonomic platform all attached to a robot housing. The robot may be controlled by a remote control station that also has a camera and a monitor. The remote control station may be linked to a base station that is wirelessly coupled to the robot. The cameras and monitors allow a care giver at the remote location to monitor and care for a patient through the robot. The holonomic platform allows the robot to move about a home or facility to locate and/or follow a patient.
Abstract:
The invention is a computerized mobile robotic router with an onboard internet web server, and a capability of establishing a first connection to a remote web browser on the internet for robotic control purposes, and a capability of establishing a second short range bi-directional digital radio connection to one or more nearby computerized digital radio equipped computers or devices external to the robot. The short-range bi-directional digital radio connection will typically have a maximum range of about 300 feet. In a preferred embodiment, this short-range wireless digital connection will use the 2.4 gHz band and digital protocols following the IEEE 802.11, 802.15, or other digital communications protocol. By employing the proper set of external short-range digital radio devices capable of interfacing with the robot (such as sensors, mechanical actuators, appliances, and the like), a remote user on the internet may direct the robot to move within range of the external devices or computers, and connect these devices or computers to the internet.
Abstract:
A robotic system that includes a mobile robot and a remote input device. The input device may be a joystick that is used to move a camera and a mobile platform of the robot. The system may operate in a mode where the mobile platform moves in a camera reference coordinate system. The camera reference coordinate system is fixed to a viewing image provided by the camera so that movement of the robot corresponds to a direction viewed on a screen. This prevents disorientation during movement of the robot if the camera is panned across a viewing area.
Abstract:
A robotic apparatus and system adapted to communicate with a wireless sensor. The apparatus may be either physical or virtual in nature and is adapted to communicate physical movements with a wireless sensor. Data received from the sensor and/or robotic apparatus may be reviewed in a real-time mode, or may be saved for review at a later time. In addition, the apparatus may be controlled through an operator that is in local or remote communication with the apparatus. The robotic system may include pre-programmed interactive platforms for enabling communication between a user and the apparatus in a dynamic mode. In addition, the system may allow an operator to program a game/story for use as an interactive platform. Accordingly, the apparatus and system provides a platform for rehabilitative exercise of a patient as well as an entertainment device.
Abstract:
A robotic system that includes a remote controlled robot. The robot may include a camera, a monitor and a holonomic platform all attached to a robot housing. The robot may be controlled by a remote control station that also has a camera and a monitor. The remote control station may be linked to a base station that is wirelessly coupled to the robot. The cameras and monitors allow a care giver at the remote location to monitor and care for a patient through the robot. The holonomic platform allows the robot to move about a home or facility to locate and/or follow a patient.
Abstract:
A mobile robot system for performing a plurality of separate operations comprising at least one autonomous wheeled mobile robot (1) having at least one wheel-driving motor, an on-board computer; means for navigation, orientation, and maneuvering in an environment with moving obstacles; a sensor system; and a wireless communication system for receiving and sending signals.
Abstract:
A robot of the present invention moves to a place where a user is, in response to the voice of the user who is calling the robot. Then, when the user presses a switch, the robot recognizes that the user desires to send an urgent call and dials a pre-registered telephone number for sending urgent calls. When a receiver responds, the robot reads out and delivers a predetermined message to the receiver as a voice message, and switches the telephone to the handfree state so that the user can talk without holding the telephone.
Abstract:
A system and a method for positioning an autonomous mobile unit for docking, wherein a slot-shaped light beam which stands perpendicular to the drive surface of the unit is provided, which beam is emitted by a docking device, and position-sensitive detectors for this light beam are present on the unit, these being arranged parallel to the drive surface of the unit. With the aid of the light beam and of the detectors, the precise rotation (beta) of the unit relative to the docking device can be determined, whereby the unit learns its approximate configuration in space by means of ultrasound or odometry measurements. With this guidance, the unit can dock very precisely at a docking device in order to be able to take on goods or to drive into a garage, for example. Position-sensitive detectors, or photodiodes are provided as receptors for the light beam. The present invention preferably can be used in household robots or in industrial cleaning robots.
Abstract:
A hybrid personal vehicle capable of holonomic omni-directional self-locomotion. The vehicle may be programmed to navigate to a specified location in a crowded household environment. Additionally, sensors are provided for accurate docking and tight mating with fixtures such as a toilet or bed. A controller determines a docking trajectory to a specified fixture and behaves with arbitrary stiffness in each degree of freedom about a determined center of compliance.
Abstract:
A gantry for computerized tomographs that can be freely moved up to or away from a patient on an operating table has been developed. It consists of a gantry main body (1) and mobile trolley section (2) that runs along a guideline formed on the floor with the gantry mounted.