Abstract:
There is provided a remote control system including a controlled device and a remote device. The controlled device has a light source and moves according to a control signal from the remote device. The remote device is adapted to be operated by a user and includes an image sensor. The remote device determines a moving direction of the controlled device according to an imaging position of the light source in the image captured by the image sensor and a pointing position of the user, and outputs the control signal.
Abstract:
The invention relates to a method for generating control commands for coordinating displacement members of a moving platform, so as to make said moving platform progress between an initial speed and a final speed according to at least two locomotive situations. The method of the invention is characterized in that each locomotive situation is associated with an elementary module corresponding thereto for generating commands for controlling coordination between a predetermined module start speed and a predetermined module end speed, and in that domains of application of these elementary modules are represented in the form of a predetermined charts for concatenating adjoining modules, covering at least partially, by juxtaposition of their start and end speeds, the spectrum of possible initial and final speeds of displacement of the platform, so as to allow determination of a series of elementary modules to be concatenated to pass from the initial speed to the final speed and the concatenation of the modules of this series so as to derive therefrom a series of corresponding control commands for the displacement members of the moving platform.
Abstract:
A self-propelled device determines an orientation for its movement based on a pre-determined reference frame. A controller device is operable by a user to control the self-propelled device. The controller device includes a user interface for controlling at least a direction of movement of the self-propelled device. The self-propelled device is configured to signal the controller device information that indicates the orientation of the self-propelled device. The controller device is configured to orient the user interface, based on the information signaled from the self-propelled device, to reflect the orientation of the self-propelled device.
Abstract:
A self-propelled device is provided including a drive system, a spherical housing, and a biasing mechanism. The drive system includes one or more motors that are contained within the spherical housing. The biasing mechanism actively forces the drive system to continuously engage an interior of the spherical housing in order to cause the spherical housing to move.
Abstract:
A self-propelled device includes a drive system, a wireless communication port, a memory and a processor. The memory stores a first set of instructions for mapping individual inputs from a first set of recognizable inputs to a corresponding command that controls movement of the self-propelled device. The processor (or processors) receive one or more inputs from the controller device over the wireless communication port, map each of the one or more inputs to a command based on the set of instructions, and control the drive system using the command determined for each of the one or more inputs. While the drive system is controlled, the processor processes one or more instructions to after the set of recognizable inputs and/or the corresponding command that is mapped to the individual inputs in the set of recognizable inputs.
Abstract:
A system for moving robots in accordance with a predetermined algorithm. The system includes: a surface having a position-coding pattern which identifies the surface; mobile robots for moving across the surface, each robot being configured for sensing and decoding the position-coding pattern; and a computer system in communication with the mobile robots. The computer system is configured to send instructions for moving each mobile robot relative to the surface in response to position information corresponding to that mobile robot. Further, the computer system is configured to determine instructions for moving each mobile robot using a predetermined algorithm. The predetermined algorithm is selected on the basis of the identity of the surface.
Abstract:
A system and method for operating robots in a robot competition. One embodiment of the system may include operator interfaces, where each operator interface is operable to control movement of a respective robot. A respective operator interface may be in communication with an associated operator radio, where each radio may have a low power RF output signal. A robot controller may be coupled to each robot in the robot competition. A robot radio may be coupled to a respective robot and in communication with a respective robot controller and operator radio. The robot radios may have a low power RF output signal while communicating with the respective operator radios. Alternatively, the radios may be short range radios, where a distance of communication may be a maximum of approximately 500 feet.
Abstract:
A system for moving robots in accordance with a predetermined algorithm. The system includes: a surface having a position-coding pattern which identifies the surface; mobile robots for moving across the surface, each robot being configured for sensing and decoding the position-coding pattern; and a computer system in communication with the mobile robots. The computer system is configured to send instructions for moving each mobile robot relative to the surface in response to position information corresponding to that mobile robot. Further, the computer system is configured to determine instructions for moving each mobile robot using a predetermined algorithm. The predetermined algorithm is selected on the basis of the identity of the surface.
Abstract:
A vehicle chase game includes a first game object and a second game object. A second game object scans for a projected spot on an overhead surface. The second game object detects the projected spot on the overhead surface and gathers location information based on the detected projected spot. The second game object generates a position of a first game object based on the location information. The second game object transfers the position of the first game object to the chase game application program. The chase game application program selects a behavior based on the position of the first game object, where a goal of the behavior is to drive the second game object to intercept the first game object. The chase game application program sends instructions to the second game object's mechanical and electrical systems to execute the selected behaviors.
Abstract:
A system and method for operating robots in a robot competition. One embodiment of the system may include operator interfaces, where each operator interface is operable to control movement of a respective robot. A respective operator interface may be in communication with an associated operator radio, where each radio may have a low power RF output signal. A robot controller may be coupled to each robot in the robot competition. A robot radio may be coupled to a respective robot and in communication with a respective robot controller and operator radio. The robot radios may have a low power RF output signal while communicating with the respective operator radios. Alternatively, the radios may be short range radios, where a distance of communication may be a maximum of approximately 500 feet.