Abstract:
The present invention provides a method for despreading spread signal used in a receiver of a wireless communication system, comprising the steps of: preprocessing spread signal to derive a group of spreading chips corresponding to a data symbol; processing Hie spreading chips to extract cophase components and orthogonal components of each of the spreading chips; and converting and combining the group of cophase components and orthogonal components according to a preset selecting signal to derive a group of despreading chips. The present invention further provides an apparatus for carrying out the above-mentioned method, which significantly simplifies the design of a dispreading circuit and reduces the area of the dispreading circuit
Abstract:
The invention provides embodiments to facilitate cell search. In one embodiment, received samples are split into a plurality of sample sets for processing. Each of the sets is processed and an accumulated result is divided by an estimated noise value. In another embodiment, a code correlator correlates the received signal with a primary synchronization code and an auxiliary code correlator having a same length as the code correlator correlates the received signal with a code having a low cross correlation with the primary synchronization code. In another embodiment, a division of an accumulated result with a noise estimate is performed using indexes of the most significant bits.
Abstract:
A method of multi-mode communications includes receiving signals from multiple sources at a plurality of sample buffers, referencing the plurality of sample buffers for a first source at one time and referencing the plurality of sample buffers for a second source at another time, and communicating data from the referenced plurality of sample buffers to a processing unit. The processing unit concurrently receives inputs from buffers in the plurality of sample buffers and outputs to other buffers in the plurality of sample buffers.
Abstract:
A joint detection system and associated methods are provided. A joint detection system is configured to perform joint detection of received signals. The joint detection system includes a joint detector accelerator configured to perform an operation of the joint detection of the received signals, wherein the joint detection includes computing joint detection variables. The operation includes a multiply and accumulate operation resulting in a value in an accumulator, and the value in the accumulator includes a plurality of bits. The joint detector accelerator is configured to select a subset of bits of the plurality of bits of the value in the accumulator, where the subset of bits selected is configurable. The joint detector accelerator is further configured to store the subset of bits into a memory as a fixed point representation.
Abstract:
A radio base station related to the present invention includes: a signal storing unit configured to store baseband signals received and over-sampled; a format determining unit configured to determine transport formats of the baseband signals; and a despreader unit configured to despread the baseband signals stored in the signal storing unit, in accordance with the transport formats determined by the format determining unit, after the determination by the format determining unit.
Abstract:
Techniques for segmented CDMA searching are disclosed. In one aspect, a searcher comprises a plurality of storage elements selectable for performing a plurality of segmentable search tasks, each storage element operable for storage of and access to state information for one of the plurality of search tasks. In another aspect, a first search task is interrupted in progress, the state information for the first task is stored, a second search task is performed, and the first search task is continued using the stored state information. In yet another aspect, a search task is segmented into smaller search segments, sized to fit within contiguous available time in the searcher. Various other aspects of the invention are also presented. These aspects have the benefit of circuit area and search-time efficiency which translate into reduced costs, increased standby time, increased acquisition speed, higher quality signal transmission, increased data throughput, decreased power, and improved overall system capacity.
Abstract:
A spread spectrum communications system using long, scalable PN sequences to achieve variable communication rates using a low-complexity and scalable matched filter architecture to provide a large processing gain, robust recovery of multiple devices in long reach, high ambient-noise environments.
Abstract:
To obtain frame synchronization and identify the cell codegroup in a cellular communication system (such as a system based upon the standard 3GPP FDD), there are available the synchronization codes organized in chips or letters transmitted at the beginning of respective slots. Slot synchronization is obtained previously in a first step of the operation of cell search. During a second step, there are acquired, by means of correlation or fast Hadamard transform, the energy values corresponding to the respective individual letters with reference to the possible starting positions of the corresponding frame within the respective slot. Operating in a serial way at the end of acquisition of the aforesaid energy values of the individual letters, or else operating in parallel, the energies of the corresponding words are determined. Of these energies only the maximum word-energy value and the information for the corresponding starting position are stored in a memory structure. Said maximum value and said starting position identify, respectively, the cell codes and the frame synchronization sought. One application is in mobile communication systems based upon standards such as UMTS, CDMA2000, IS95, or WBCDMA.
Abstract:
A method and apparatus for reducing the processing rate when performing chip-level equalization (CLE) in a code division multiple access (CDMA) receiver which includes an equalizer filter. Signals received by at least one antenna of the receiver are sampled at M times the chip rate. Each sample stream is split into M sample data streams at the chip rate. Multipath combining is preferably performed on each split sample data stream. The sample data streams are then combined into one combined sample data stream at the chip rate. The equalizer filter performs equalization on the combined sample stream at the chip rate. Filter coefficients are adjusted by adding a correction term to the filter coefficients utilized by the equalizer filter for a previous iteration.
Abstract:
A satellite signal adjustable time-division multiplexing receiver for GNSS and a method for acquiring and tracking satellite signal used in the receiver. The present invention executes correlation in an adjustable time-division multiplexing and uses a clock signal with a clock rate to control speed of correlation. The clock rate can be fixed or variable. In the case that the clock rate is variable, when the speed is required to be fast (e.g. in satellite acquisition mode), the clock rate is set to be high clock rate; when the speed needs not be so fast (e.g. in signal tracking mode), the clock rate can be lower down to reduce power consumption. The adjustable time-division multiplexing is arranged for respective domains such as visible satellite, code phase, Doppler frequency and tracking accuracy according to the clock rate.