Abstract:
An apparatus for reading images of a photographic film disposed on an image reading optical path, with a light source (31a) for emitting visible light and infrared light into the image reading optical path to irradiate the photographic film, and a zoom lens unit (32a) for the visible light and infrared light irradiating the photographic film. A visible light sensor and an infrared light sensor are disposed separately for detecting a visible image based on the visible light from the zoom lens unit, and for detecting an infrared image based on the infrared light from the zoom lens unit, respectively. A focal position varying transparent element (FT) is provided for shifting a focal position of the zoom lens unit along an optical axis. The transparent element is movable to and from a position between the zoom lens unit and infrared light sensor to correct variations in the focal position occurring with variations in magnification of the zoom lens unit.
Abstract:
A motion sensing system is disclosed having a housing or mounting, a sensor, a shield and a cover. A spacer and a printed circuit board may also be included. The cylindrical shaped sensor is placed within the cup shaped shield with the spacer disposed between the sensor and the printed circuit board. The shield and the printed circuit board are then fastened together. Next, the bottom or nose of the mounting shield is placed into the dish shaped cover and the combination is fastened to the housing with the cover extending into an opening in the bottom wall of the housing. The system allows a downward looking motion sensing capability in addition to the typical forward sensing capability which may also be installed in the housing. The housing may then be connected to a security lighting fixture. An even simpler version is a motion sensing system having a simple mounting for a two transducer PIR sensor where one of the transducers is covered and a Fresnel lens is absent. An effective short range motion detector results and the sensor may be aimed in any direction.
Abstract:
In a multistage active infrared sensor, the light emitters 11A, 11B, 11C emit infrared signals which contain distinct channel information. These light emitters 11A, 11B, 11C emit the infrared signals at different timings from each other. This sensor judges whether the infrared signals received by light receivers 12A, 12B, 12C contain channel information of opposite light emitters 11A, 11B, 11C. The sensor cancels any infrared signal which does not contain the channel information of the opposite light emitters 11A, 11B, 11C.
Abstract:
A microwave-enhanced infrared thermography technique for detecting buried objects exploits varying phase shifts experienced by different-frequency microwave signals reflected from objects back toward the surface, the phase shifts resulting in different interference patterns and therefore different temperature distribution patterns near the surface. Respective infrared images of an area are captured prior to microwave heating, after a first heating with a first frequency, and after heating with a second frequency different from the first. Pairs of the images are subtracted to form temperature rise images showing patterns of temperature rise in the two cycles, and the temperature rise images are subtracted to form a difference image which is analyzed to identify characteristics indicating the presence of buried objects.
Abstract:
An infrared camera includes a temperature sensor (39) and an element operating temperature setting circuit (30) for setting a temperature obtained by adding a desired offset to the temperature of the temperature sensor (39) immediately after the power-on as an operating temperature of an imaging device (2), and images with the imaging device (2) settled to the temperature obtained by adding the desired offset to the temperature of the temperature sensor (39) immediately after the power-on.
Abstract:
Tomographic approaches to hyperspectral imaging, such as CTHIS13 (Chromotomographic Hyperspectral Imaging Sensor), can eliminate the need for the slit, filter, or resonant cavity and substantially increase the optical throughput of the system. These systems capture most of the photon energy from the entire spectral band over the entire measurement interval. Uncooled LWIR imaging technology uses thermal based detecting elements that are less sensitive than the competing photon based cooled detecting elements, and require high optical throughput. An uncooled LWIR hyperspectral imager is described that combines a new high optical efficiency spectral imaging technique combined with a high performance uncooled thermal imager. The merging of these technologies in the current invention will significantly reduce the size, weight, and power requirements of LWIR hyperspectral systems.
Abstract:
A micropatterned thermosensor (5), in particular an infrared sensor, is proposed, having a supporting body (12) and at least one thermocouple (20) arranged thereon. The thermocouple (20) also has a first material (13) and a second material (14), which together form, at least in a pointwise manner, at least one thermal contact (10, 11). Furthermore, it is provided that the first and/or the second material (13, 14) are configured at least regionally in the form of a meander-shaped or undulating-type circuit trace (15, 16) and run on the supporting body (12). In addition, a micropatterned thermosensor (5) is proposed, preferably also having such patterned circuit traces (15, 16), in which the first material (13) is platinum or aluminum, and the second material (14) is doped or undoped polysilicon-germanium.
Abstract:
A night vision system 10 is provided for detecting objects at relatively low visible light levels. The system 10 includes an infrared light source 14. The system 10 further includes a thin sheet optical element 16 extending along a first axis 27 receiving light from the infrared light source 14 and reflecting the light generally in a first direction. Finally, the system 10 includes an infrared camera for receiving the light reflected off objects in the environment and generating a video signal responsive to the received light.
Abstract:
The invention relates to a method in the process of manufacturing and/or finishing a fibre web (11), in which method said continuous and moving web (11), and/or a moving means (16, 17) related to the processing of the web (11), is monitored by one or more thermal cameras (10) of the infrared range or a corresponding detector/detectors for the purpose of controlling the quality or condition. According to the invention, a substantially continuous two-dimensional thermal image or continuous thermal chart (20) of an object (11, 16, 17) being monitored and in a propagating and/or rotating movement is formed by said detector/detectors in a time-resolved manner and in synchronization with the movement of the object (11, 16, 17) in the direction of the movement. To determine the properties of the object (11, 16, 17) and/or to detect defects in the object from the continuous thermal chart (20), local deviations and/or discontinuities (21, 22) in the temperature, particularly in the direction of movement, are detected, and the cause of said deviations and/or discontinuities (21, 22) is identified on the basis of the periodicity of said phenomena in the direction of movement.
Abstract:
Method and apparatus for measuring a surface temperature of an object body, by calculating a temperature at each picture element of an image of the object body, on the basis of a radiant intensity ratio at each pair of corresponding picture elements of a first and a second image which are obtained with respective radiations having respective first and second wavelengths which are selected from a light emitted from the surface of the body, by a first filter which permits transmission therethrough a radiation having the first wavelength which is selected according to a radiant intensity curve corresponding to a wavelength of a black body at a lower limit of a temperature measurement range, and which is within a high radiant intensity range in which the radiant intensity is higher than a radiant intensity at a normal room temperature, and a second filter which permits transmission therethrough a radiation having the second wavelength which is selected within the high radiant intensity range, such that the second wavelength is different from the first wavelength by a predetermined difference which is not larger than null of the first wavelength and which is not smaller than a sum of half widths of the first and second wavelengths.