Abstract:
A tracing system may use an evaluation mechanism to determine which functions to include or exclude during tracing. The architecture may evaluate functions when functions or groups of functions may be loaded for execution, as well as each time a function may be encountered. The evaluation mechanism may use whitelists, blacklists, and various expressions to identify which functions to trace and which functions to exclude. The evaluation mechanism may evaluate an expression that may identify specific conditions under which a function may be traced or not traced. The tracing mechanism may create wrapping functions for each function, including callback functions.
Abstract:
A tracer may obfuscate trace data such that the trace data may be used in an unsecure environment even though raw trace data may contain private, confidential, or other sensitive information. The tracer may obfuscate using irreversible or lossy hash functions, look up tables, or other mechanisms for certain raw trace data, rendering the obfuscated trace data acceptable for transmission, storage, and analysis. In the case of parameters passed to and from a function, trace data may be obfuscated as a group or as individual parameters. The obfuscated trace data may be transmitted to a remote server in some scenarios.
Abstract:
A tracing system may trace applications and their modules, and may make module-specific data available through various interfaces. The tracing system may collect tracer data while an application executes, and may preprocess the data into application-specific and module-specific databases. An analysis engine may further analyze and process these databases to create application-specific views and module-specific views into the data. The application-specific views may be intended for a developer of the application, while the module-specific views may have a public version accessible to everybody and a module developer version that may contain additional details that may be useful to the module developer.
Abstract:
An event chain visualization of performance data may show the execution of monitored elements as bars on a timeline, with connections or other relationships connecting the various bars into a sequential view of an application. The visualization may include color, shading, or other highlighting to show resource utilization or performance metrics. The visualization may be generated by monitoring many events processed by an application, where each bar on a timeline may reflect multiple instances of a monitored element and, in some case, the aggregated performance.
Abstract:
Processes in a message passing system may be launched when messages having data patterns match a function on a receiving process. The function may be identified by an execution pointer within the process. When the match occurs, the process may be added to a runnable queue, and in some embodiments, may be raised to the top of a runnable queue. When a match does not occur, the process may remain in a blocked or non-executing state. In some embodiments, a blocked process may be placed in an idle queue and may not be executed until a process scheduler determines that a message has been received that fulfills a function waiting for input. When the message fulfills the function, the process may be moved to a runnable queue.
Abstract:
Memoization may be deployed using a configuration file or database that identifies functions to memorize, and in some cases, includes input and result values for those functions. As an application is executed, functions defined in the configuration file may be captured and memoized. During the first execution of the function, the return value may be captured and stored in the configuration file. For subsequent executions of the function, the return value may be stored in the configuration file. In some cases, the configuration file may be distributed with the return values to client computers. The configuration file may be created by one device and deployed to other devices in some deployments.
Abstract:
A set of optimizations may be defined in a configuration database. The configuration database may be defined with a set of boundaries that may define conditions under which the optimizations may be valid. When the conditions are not met, a new configuration database may be requested from an optimization server. The system may be used to distribute and manage optimizations for an application, which may be deployed in interpreted or runtime scenarios or in pre-execution or compiled scenarios.
Abstract:
A configurable memory allocation and management system may generate a configuration file with memory settings that may be deployed prior to runtime. A compiler or other pre-execution system may detect a memory allocation boundary and decorate the code. During execution, the decorated code may be used to look up memory allocation and management settings from a database or to deploy optimized settings that may be embedded in the decorations.
Abstract:
A bottleneck detector may use an iterative method to identify a bottleneck with specificity. An automated checkpoint inserter may place checkpoints in an application. When a bottleneck is detected in an area of an application, the first set of checkpoints may be removed and a new set of checkpoints may be placed in the area of the bottleneck. The process may iterate until a bottleneck may be identified with enough specificity to aid a developer or administrator of an application. In some cases, the process may identify a specific function or line of code where a bottleneck occurs.
Abstract:
Code elements may be selected from a graph depicting an application. The graph may show code elements as nodes, with edges representing connections between the nodes. The connections may be messages passed between code elements, code flow relationships, or other relationships. When a code element or group of code elements are selected from the graph, the corresponding source code may be displayed. The code may be displayed in a code editor or other mechanism by which the code may be viewed, edited, and manipulated.