Abstract:
A method of manufacturing a nitride semiconductor device is disclosed. The method includes forming a gallium nitride (GaN) epitaxial layer on a first support substrate, forming a second support substrate on the GaN epitaxial layer, forming a passivation layer on a surface of the other region except for the first support substrate, etching the first support substrate by using the passivation layer as a mask, and removing the passivation layer and thereby exposing the second support substrate and the GaN epitaxial layer.
Abstract:
A method of forming a semiconductor device is provided, comprising forming a plurality of hard masks on a substrate by patterning an insulating layer; forming a plurality of trenches in the substrate, each trench having trench walls disposed between two adjacent masks and extending vertically from a bottom portion to an upper portion; forming an insulating layer on the hard masks and the trench walls; forming a conductive layer on the insulating layer; etching the conductive layer to form conductive layer patterns to fill the bottom portions of the trenches; depositing a buffer layer on the conductive layer patterns and the trench walls; and filling the upper portions of the trenches with a capping layer.
Abstract:
A thin film transistor array panel includes an insulating substrate, a plurality of pixel electrodes arranged on the insulating substrate in rows and columns, a plurality of thin film transistors connected with the plurality of pixel electrodes, respectively, and a plurality of gate lines and a plurality of data lines connected with the plurality of thin film transistors. When one data line and one pixel electrode which are connected with a single thin film transistor are referred to as a connected data line and a connected pixel electrode, respectively, the plurality of thin film transistors are positioned on a same side of the connected data line in two adjacent rows, and on alternating sides of the connected data line in every other two adjacent rows. Two boundary lines of the connected pixel electrode are overlapped with the connected data line.
Abstract:
A method for manufacturing a gallium nitride (GaN) wafer is provided. In the method for manufacturing the GaN wafer according to an embodiment, an etch stop layer is formed on a substrate, and a first GaN layer is formed on the etch stop layer. A portion of the first GaN layer is etched with a silane gas, and a second GaN layer is formed on the etched first GaN layer. A third GaN layer is formed on the second GaN layer.
Abstract:
The present invention relates to a compound semiconductor substrate and a method for manufacturing the same. The present invention provides the manufacturing method which coats spherical balls on a substrate, forms a metal layer between the spherical balls, removes the spherical balls to form openings, and grows a compound semiconductor layer from the openings. According to the present invention, the manufacturing method can be simplified and grow a high quality compound semiconductor layer rapidly, simply and inexpensively, as compared with a conventional ELO (Epitaxial Lateral Overgrowth) method or a method for forming a compound semiconductor layer on a metal layer. And, the metal layer serves as one electrode of a light emitting device and a light reflecting film to provide a light emitting device having reduced power consumption and high light emitting efficiency.
Abstract:
The present invention provides a composite material comprising a glass cloth; and an organic- inorganic hybrid composition comprising diphenylsilanediol and alkoxy si lane, a composite film manufactured by using the same, and a method for manufacturing the composite film.
Abstract:
Provided are a touch screen panel and a method of manufacturing the same. The touch screen panel comprises: a substrate; a first reflection-preventing film formed on the substrate; a first gate wiring formed on the first reflection-preventing film; and a sensing wiring formed above the first gate wiring to be insulated from the first gate wiring and to cross the first gate wiring.
Abstract:
A method of manufacturing a thin film transistor capable of simplifying a substrate structure and a manufacturing process is disclosed. The method of manufacturing a thin film transistor array substrate comprising a three mask process. The 3 mask process comprising, forming a gate pattern on a substrate, forming a gate insulating film on the substrate, forming a source/drain pattern and a semiconductor pattern on the substrate, forming a first, second, and third passivation film successively on the substrate. Over the above multi-layers of the passivation film forming a first photoresist pattern comprising a first portion formed on part of the drain electrode and on the pixel region, and a second portion wherein, the second portion thicker than the first portion, and then patterning the third passivation film using the first photoresist pattern, forming a second photoresist pattern by removing the first portion of the first photoresist pattern, forming a transparent electrode film on the substrate, removing the second photoresist pattern and the transparent electrode film disposed on the second photoresist pattern; and forming a transparent electrode pattern on the second passivation layer.
Abstract:
Provided is a method for preparing a compound semiconductor substrate. The method includes coating a plurality of spherical balls on a substrate, growing a compound semiconductor epitaxial layer on the substrate coated with the spherical balls while allowing voids to be formed under the spherical balls, and cooling the substrate on which the compound semiconductor epitaxial layer is grown so that the substrate and the compound semiconductor epitaxial layer are self-separated along the voids. The spherical ball treatment can reduce dislocation generations. In addition, because the substrate and the compound semiconductor epitaxial layer are separated through the self-separation, there is no need for laser lift-off process.
Abstract:
A noise silencer for construction equipment is used to minimize outward propagation of noises generated from an engine room. The noise silencer is mounted in air intake and/or discharge openings of an engine room, and includes a frame mounted in the one of the air intake and discharge openings of the engine room, and noise damping members fixed to the frame at uniform intervals, and each including a first member, which is disposed inside the engine room in a horizontal direction such that cooling air introduced from outside to inside of the engine room by operation of a cooling fan smoothly flows, and a second member, which is integrally formed with the first member and is disposed outside the engine room so as to be inclined upwardly at a predetermined inclination.