Abstract:
Variable liquid crystal devices for controlling the propagation of light through a liquid crystal layer use a frequency dependent material to dynamically reconfigure effective electrode structures in the device. The frequency of a drive signal that generates an electric field in the device can be varied, and the frequency dependent material has different charge mobilities for the different frequencies. At a low charge mobility, the frequency dependent material has little effect on the existing electrode structures. However, at a high charge mobility, the frequency dependent material appears as an extension of the fixed electrodes, and can be used to change the effective electrode structure and, thereby, the spatial profile of the electric field. This, in turn, changes the optical properties of the liquid crystal, thus allowing the optical device to be frequency controllable.
Abstract:
Variable liquid crystal devices for controlling the propagation of light through a liquid crystal layer use a frequency dependent material to dynamically reconfigure effective electrode structures in the device. The drive signal source uses pulse-width modulation to set a frequency and an amplitude of the drive signal.
Abstract:
A spatially non-uniform electrode structure is proposed for controlling a spatially non-uniform electric field driving a tunable liquid crystal lens. The spatially non-uniform electrode structure enables the generation of a predetermined spatially non-uniform electric field profile where complex capacitive coupling between multiple different electrically floating neighboring electrode segments is employed for the generation of the electrical field of desired form by supplying an initial electric potential to a limited number of electrodes.
Abstract:
Variable liquid crystal devices for controlling the propagation of light through a liquid crystal layer use a frequency dependent material to dynamically reconfigure effective electrode structures in the device. The drive signal source uses pulse-width modulation to set a frequency and an amplitude of the drive signal.
Abstract:
Variable liquid crystal devices for controlling the propagation of light through a liquid crystal layer use a frequency dependent material to dynamically reconfigure effective electrode structures in the device. The drive signal source uses pulse-width modulation to set a frequency and an amplitude of the drive signal.
Abstract:
An electrode structure is proposed for controlling a spatially non-uniform electric field driving a tunable liquid crystal lens or beam steering device. The spatially non-uniform electrode structure enables the generation of a predetermined spatially non-uniform electric field profile where complex capacitive coupling between multiple different electrically floating neighboring electrode segments is employed for the generation of the electrical field of desired form by supplying an initial electric potential to a limited number of electrodes.
Abstract:
A tunable liquid crystal optical device defining an optical aperture and having a layered structure. The device includes a film electrode formed on a surface of a first substrate and covered by a second substrate, and a contact structure filling a volume within the layered structure and contacting the film electrode. The contact structure is located outside of the optical aperture and provides an electrical connection surface much larger than a thickness of the film electrode, such that reliable electrical connections may be made to the electrode, particularly in the context of wafer scale manufacturing of such a device.
Abstract:
A wafer level method of manufacturing a liquid crystal optical device removes the need for a rigid barrier fillet while minimizing any risk of contamination of the liquid crystal. An uncured adhesive may be deposited on a bottom substrate and partially cured to form a liquid crystal barrier. After addition of the liquid crystal and a top substrate, the adhesive is fully cured to bond the substrate layers together. An uncured adhesive may be used together with the partially cured adhesive, and may be deposited separately or filled into an extracellular matrix surrounding a plurality of liquid crystal cells. The adhesive may be cured by a variety of means, including light that may be spatially modulated. One or both of the substrates may be deformed during assembly so as to create a structure with a lensing effect on light passing through the liquid crystal region.