Abstract:
Methods and apparatus for testing operation of a single or multiple tunable active optical device(s) operated by one or more driving electrodes are described. Test methods and apparatus are provided for device testing without necessarily requiring direct physical contact with the driving electrodes. Testing subjects devices to incident light along an optical path and to an external electric field applied to the device producing a dipolar charge distribution within the electrodes, causing the device to operate. The effect of device operation on incident light is optically sensed. The sensed effect is analyzed to identify device defects. Test methods and apparatus are provided for testing multiple unsingulated devices during fabrication employing a strip contact structure having contact strips connected to multiple devices and extending to wafer edges, such that singulating devices leaves portions of the strip contact structure exposed on device dice edges providing electrical contacts in use.
Abstract:
A variable liquid crystal optical device for controlling the propagation of light has one or more transparent thin-film highly-resistive layer (HRL) coupled to a substrate and an electrode structure. The HRL has core layer and a cover or proximity layer, wherein the core layer material has a higher electrical conductivity and higher refractive index than the cover layer material; and wherein the core and cover layer materials have substantially the same free energies of formation of oxide. In this way, the electrode structure will be environmentally stable and responsive to an applied electrical current to generate a spatially non-uniform magnetic field.
Abstract:
A method of wafer level manufacturing, separating and electrical connection of liquid crystal optical devices is disclosed. An electro-optic device having at least one liquid crystal cell for providing spatially variable control of light is also described. The electro-optic device includes: a pair of opposed substrates, each substrate having a lateral extent; a pair of electrodes for applying an electric field therebetween, each electrode having a pattern and being deposited on a corresponding substrate, each electrode having an electrical contact area extending to at least one side of the corresponding substrate; a pair of alignment layers sandwiching a liquid crystal layer therebetween, the alignment layers defining a predominant orientation direction for liquid crystal molecules of the liquid crystal layer; and a liquid crystal reservoir wall defining a lateral extent of the liquid crystal layer, the liquid crystal reservoir wall being spaced from at least one side of each substrate such that each electrode electrical contact area is exposed to air in an air gap between the substrates.
Abstract:
Variable liquid crystal devices for controlling the propagation of light through a liquid crystal layer use a frequency dependent material to dynamically reconfigure effective electrode structures in the device. The frequency of a drive signal that generates an electric field in the device can be varied, and the frequency dependent material has different charge mobilities for the different frequencies. At a low charge mobility, the frequency dependent material has little effect on the existing electrode structures. However, at a high charge mobility, the frequency dependent material appears as an extension of the fixed electrodes, and can be used to change the effective electrode structure and, thereby, the spatial profile of the electric field. This, in turn, changes the optical properties of the liquid crystal, thus allowing the optical device to be frequency controllable.
Abstract:
An architectural lighting device for wall washing providing suitable beam modulation is described herein. The device combines a variable divergence beam source (a light source along with a beam stretching element) in combination with a specially designed side reflector that redirects a portion of a broadened beam back onto the wall so as to have wall illumination increase with beam divergence.
Abstract:
A liquid crystal optical device is described configured to provide variable beam steering or refractive Fresnel lens control over light passing through an aperture of the device. The device includes at least one layer of liquid crystal material contained by substrates having alignment layers. An arrangement of electrodes is configured to provide a spatially varying electric field distribution within a number of zones within the liquid crystal layer. The liquid crystal optical device is structured to provide a spatial variation in optical phase delay with a transition at a boundary between zones which is an approximation of a sawtooth waveform across the boundaries of multiple zones. The arrangement of electrodes, device layered geometry and methods of driving the electrodes increase the effective aperture of the overall optical device.
Abstract:
A liquid crystal optical device providing refractive Fresnel lens type element control over light passing through an aperture is provided. The device includes a layer of liquid crystal material contained by flat substrates having flat alignment layers; and an arrangement of electrodes configured to provide a spatially varying voltage distribution within a number of lensing zones within said liquid crystal layer. The arrangement of electrodes includes ring-shaped electrodes defining boundaries between Fresnel lensing zones. The liquid crystal optical device is structured to provide a spatial variation in the optical phase delay with an abrupt transition at a boundary between lensing zones to increase the effective aperture of the optical device.
Abstract:
Liquid crystal light beam control devices and their manufacture are described. Beneficial aspects of beam broadening devices employed for controlled illumination and architectural purposes are presented including improving beam divergence control, improving beam broadening dynamic range control, beam divergence preconditioning, improving projected beam intensity uniformity and reducing color separation in the projected beam. Both beam control devices having in-plane and homeotropic ground state liquid crystal alignment are presented.
Abstract:
A reprogrammable intraocular adaptive lens prosthesis apparatus is provided. The apparatus includes a tunable liquid crystal lens (TLCL) encapsulated in the intraocular prosthesis with control electronics and a power source or in the intraocular prosthesis with a control signal receiver while an external control electronics package transmits the control signal. The TLCL is driven in response to a stimulus signal to provide accommodation. The TLCL corrects other visual shortcomings of the natural eye. The intraocular prosthesis has a remote programmable TLCL controller configured to recalibrate the TLCL to compensate for dynamic adaptation of the eye over time.
Abstract:
An apparatus for controlling light transmission from an optical input to an optical output can function as a tunable iris or eclipse, or as a privacy window. The iris/eclipse can use a liquid crystal matrix with a dispersion of dichroic particles that absorb light in one orientation and transmit light in another, such that controlling the liquid crystal with an electric field allows control of the dichroic particles. Alternatively, a layer may be used with a light absorbing liquid or powder material that moves with a charged material in response to a variable electric field applied to the layer. Privacy windows use a plurality of liquid crystal microlenses that can be controlled with an electric field to allow an image of an optical input to be obtainable at an optical output when in a first state, or to render the image irretrievable when in a second state.