Abstract:
An apparatus includes a network node configured to communicate with other network nodes via a communication network. The network node includes a plurality of transceivers and a controller. The controller includes a link management module and a packet management module. The link management module is configured to produce link profiles associated with communication links available to the network node, wherein a link profile indicates link characteristics that include a busy indication of a transceiver. The packet management module is configured to identify a link profile solution set that includes a set of link profiles corresponding to communication links for multicasting the message packet, map the link profiles of the link profile solution set to at least a portion of the plurality of transceivers, and initiate transmission of the message packet using the communication links corresponding to the link profile solution set.
Abstract:
Systems and methods are disclosed for determining whether a third party observer could determine that an organization has an intent with respect to subject matter based on the organization's web activity. The determination that there is a risk of information leaks to the third party observer can be completed by analyzing the entropy of web usage information destined for the third party observer's servers. Systems and methods are also disclosed for mitigating the risk of information leaks by obscuring the organization's web activity. The web activity can be obscured by selecting candidate actions that can be used to generate neutralizing web traffic from the organization's network which will obscure an intent with respect to a particular subject matter. For example, the candidate actions can identify specific queries, links, or actions that the organization can take to neutralize their web activity to a less remarkable point in the search space.
Abstract:
A system and method of deploying a network hopping adaptor is disclosed. In some embodiments, a network hopping adaptor may be configured to manipulate network traffic so as to change at least one network characteristic of the network traffic, and at least one network interface of a machine selected from a group of machines may be configured to send the network traffic to the network hopping adaptor. The network hopping adaptor may manipulate such characteristics as an IP address, a port number, an encryption algorithm or a compression algorithm. The group of machines may be deployed as virtual machines being executed by a virtualization server, and the network hopping adaptor may be implemented on another virtual machine being executed by the virtualization server. Alternatively, or in addition, the group of machines or the network hopping adaptor may be implemented as physical machines.
Abstract:
A magnetic random access memory (MRAM) array including: a plurality of MRAM cells arranged in an array configuration, each comprising a first type nTron and a magnetic memory element; a wordline select circuit comprising of a second type nTron to drive a plurality of parallel wordlines; and a plurality of bitline select circuits, each comprising of said second type nTron for writing to and reading from a column of memory cells in the array and each capable of selecting a single MRAM cell for a memory read or write operation, wherein the second nTron has a higher current drive than the first nTron.
Abstract:
A computer device may receive a codebook, and generate a unitary transformation operator for the codebook. Furthermore, the computer device may decompose the unitary transformation operator into representations of two or more devices, and cause a generating of a layout of a photonic circuit that includes the two or more devices.
Abstract:
A method of increasing processing diversity on a computer system includes: loading a plurality of instruction streams, each of the plurality of instruction streams being equivalent; executing, in a context, a first stream of the plurality of instruction streams; stopping execution of the first stream at a first location of the first stream; and executing, in the context, a second stream of the plurality of instruction streams at a second location of the second stream, the second location corresponding to the first location of the first stream.
Abstract:
The invention relates to systems and methods of operating a wireless network including allocating and assigning frequency channels using a dynamic and distributed process. For example, a network node in an ad hoc wireless network will assign frequency channels to one or more of its transceivers based on at least one of a list of allowed frequency channels and a neighbor-frequency channel list.
Abstract:
Generally described herein are methods and systems for enhanced tamper and malware resistant computer architectures. A system for enhanced tamper and malware resistance can include a harvardizer configured to receive comingled instructions and data and produce separated instructions and data. A data memory can be configured to receive the separated data. An instruction memory that is physically separate from the data memory can be configured to receive the separated instructions. The system can include one or more computer processors that can be configured to execute the separated instructions and data. The system can include one or more encryptors or decryptors to help thwart injection based attacks.
Abstract:
Generally discussed herein are systems, apparatuses, or processes to recognize that a cyber threat exists or predict a future track of a cyber threat in a network. According to an example, a process for recognizing a cyber threat can include (1) determining a network layout of a network based on received network layout data, (2) receiving cyber sensor data indicating actions performed on the network, (3) calculating a first score associated with the cyber sensor data indicating that a cyber threat is present in the network by comparing a cyber threat profile of the cyber threat that details actions performed by the cyber threat to actions indicated by the cyber sensor data, (4) determining whether the calculated first score is greater than a specified threshold, or (5) determining that the cyber threat is present in response to determining the calculated first score is greater than the specified threshold.
Abstract:
In a computer implemented method for data privacy in a distributed communication system including a plurality of client terminals, the method includes: receiving, from each of the plurality of client terminals, a group of key switch hints generated by said each of the client terminals, wherein each group of key switch hints include a key switch hint corresponding to each other one of the client terminals; receiving, from each of the client terminals, an encrypted data stream; switching each of the encrypted data streams using the key switch hints corresponding to said each other one of the client terminals to generate a respective switched data set for said each of the encrypted data streams, wherein each switched data set includes a plurality of encrypted data representations of said each of the encrypted data streams; and generating an encrypted output data stream for each of the client terminals using the switched data set for each encrypted data stream.