Abstract:
In an exhaust gas turbocharger for an internal combustion engine of a motor vehicle with a turbine comprising a turbine housing with at least a first and a second spiral channel, each being coupled to an exhaust gas line of an exhaust gas tract of the internal combustion engine for conducting exhaust gas to a turbine wheel arranged within the turbine housing and driving a compressor wheel of a compressor of the exhaust gas turbocharger, an area ratio Qg of the turbine corresponds to the formula Qg=(Aλ+AAGR)/AR>0.40, wherein Aλ refers to a narrowest flow cross-section of the first spiral channel, AAGR to a narrowest flow cross-section of the second spiral channel (52b) and AR to a wheel exit flow cross-section of the turbine exhaust channel. The invention further relates to a motor vehicle with an internal combustion engine and such an exhaust gas turbocharger.
Abstract:
In an internal combustion engine comprising an exhaust gas turbocharger, which includes a compressor with a compressor wheel arranged in an inlet tract of the internal combustion engine and a turbine with a turbine wheel coupled rotationally to the compressor wheel and arranged in an at least two-path exhaust gas tract of which is connected to an exhaust gas guide section of the turbine including at least a first spiral channel coupled to the first exhaust path and a second spiral channel coupled to a second exhaust gas path, two guide vane elements are arranged upstream of the turbine wheel and downstream of respective spiral channels which are formed corresponding to a first degree of asymmetry A1 determined as a quotient Θ of a first mass flow parameter and a second mass flow parameter which is between 0.4 and 0.8.
Abstract:
In a compressor of a turbocharger of an internal combustion engine comprising a housing with an inflow channel; a compressor impeller arranged in the inflow channel; and a bypass channel which has a first flow opening upstream of the compressor impeller inlet, a second flow opening downstream of the compressor impeller inlet and an axial annular chamber which connects the first and the second flow openings. An axial vane structure is provided in the axial annular chamber of the bypass channel, which imparts a swirl direction corresponding to that of the air mass flow in the inflow channel to the air mass flowing through the bypass channel from the second to the first flow opening.
Abstract:
In an internal combustion engine having two exhaust gas turbochargers which are connected in series and a bypass line which bypasses the exhaust gas turbine close to the engine and extends to a collecting space of the turbine remote from the engine, and a blow-off valve is integrated into the turbine housing of the remote exhaust gas turbine for controlling a communication path between the collecting space and the turbine wheel, and includes a control sleeve supported axially movably between a closed position in which the communication path is blocked and a fully open position in which a flow path by-passing the turbine wheel of the turbine remote from the engine is provided.
Abstract:
A fuel cell system has at least one fuel cell, a hydrogen storage tank in which hydrogen is stored at a pressure above atmospheric and which communicates via a hydrogen supply line with an anode chamber of the fuel cell. An anode circuit, via which unreacted hydrogen is able to be recirculated from a region downstream of the anode chamber into the hydrogen supply line, is provided. At least one pumping device is provided between the outlet of the anode chamber and its inlet in the anode circuit and/or the hydrogen supply line. Between the hydrogen storage tank and the anode chamber, a turbine is provided, which supplies at least a portion of the power required for driving the pumping device.
Abstract:
In the turbine housing for an exhaust gas turbocharger of a drive assembly at least one spiral channel, which can be coupled to an exhaust gas line of the drive assembly is provided A receiving chamber for a turbine wheel to which exhaust gas can be supplied is disposed upstream of the at least one spiral channel. The turbine wheel is disposed in the turbine housing so as to be rotatable about a rotational axis. A guide baffle is arranged fixed to the turbine housing in a transition region between the at least one spiral channel, the guide baffle being connected to the turbine housing by a metal-to-metal joint whereby the guide baffle is connected to the turbine housing in a particular tight manner.
Abstract:
In an exhaust gas turbocharger for an internal combustion engine having a housing comprising an exhaust gas guide segment, an air guide segment, and a bearing segment, and a rotor assembly comprising a turbine wheel having a plurality of blades, a compressor wheel, and a shaft rotationally fixing the turbine wheel (5) to the compressor wheel, wherein the turbine wheel is rotationally supported in the exhaust gas guide segment and the compressor wheel is rotationally supported in the air guide segment and the shaft is rotationally supported in the bearing segment and, wherein the turbine wheel is acted on by exhaust gas from the internal combustion engine for driving the rotor assembly, a sleeve-shaped sliding element is positioned in the exhaust gas guide segment for conditioning the exhaust gas flow acting on the turbine wheel.
Abstract:
In an air supply unit for a fuel cell stack comprising a compressor for compressing air that is fed via a feed line to the fuel cell stack and to a turbine to which also exhaust gas of a combustion chamber can be supplied and wherein an exhaust gas from the combustion chamber is supplied to the turbine, the feed line to the fuel cell stack is in communication with a branch line by way of which compressed air can be fed also to the combustion chamber. The invention further relates to a method for operating an air supply unit for the fuel cell system.
Abstract:
In a turbine housing for an exhaust gas turbocharger of an internal combustion engine with at least one spiral channel, which can be coupled into an exhaust gas flow of an exhaust tract of the internal combustion engine, and a receiving space for a turbine wheel which is disposed downstream of the at least one spiral channel and can be acted upon by the exhaust gas of the internal combustion engine passing through the at least one spiral channel of the turbine housing, there is at least one partial housing including the at least one spiral channel, and a housing module which is fastened to the partial housing and has a vane structure disposed upstream of the receiving space which also includes an attachment surface for a bearing section of the exhaust gas turbocharger. The invention also resides in an exhaust gas turbocharger with such a turbine housing as well as to a method for producing such a turbine housing.
Abstract:
In a radial compressor, particularly of an exhaust gas turbocharger of an internal combustion engine, having a compressor housing within which a compressor wheel is disposed for compressing air from an inflow channel of the compressor housing and directing the air to an outflow channel of the compressor housing, the compressor housing comprising a bypass channel having a first flow opening upstream of an axial compressor wheel inlet and a second flow opening downstream of the compressor wheel inlet, the compressor housing is configured at least in a flow region upstream of the outflow channel in a rotational asymmetric manner with regard to a rotational axis of the compressor wheel.