Abstract:
WDMs have been used to separate a plurality of signals spatially by the difference of wavelengths in prior bidirectional multiwavelength optical communication network. For excluding WDMs, linear PD/LD modules adopt eigen-wavelength photodiodes sensing only the light of an eigen wavelength but allowing all the wavelengths longer than the eigen wavelength. An n-member PD/LD module aligns (n-1) eigen wavelength photodiodes, PD1, PD2, PD3, . . . , PDn-1 of .lambda.1, .lambda.2, .lambda.3, . . . ,.lambda.n-1 and an LD of .lambda. n which satisfy inequalities .lambda.1
Abstract:
Provided are a semiconductor device and an optical sensor device, each having reduced dark current, and detectivity extended toward longer wavelengths in the near-infrared. Further, a method for manufacturing the semiconductor device is provided. The semiconductor device 50 includes an absorption layer 3 of a type II (GaAsSb/InGaAs) MQW structure located on an InP substrate 1, and an InP contact layer 5 located on the MQW structure. In the MQW structure, a composition x (%) of GaAsSb is not smaller than 44%, a thickness z (nm) thereof is not smaller than 3 nm, and z≧−0.4x+24.6 is satisfied.
Abstract:
An image pickup device, a visibility support apparatus, a night vision device, a navigation support apparatus, and a monitoring device are provided in which noise and dark current are suppressed to thereby provide clear images regardless of whether it is day or night. The device includes a light-receiving layer 3 having a multi-quantum well structure and a diffusion concentration distribution control layer 4 disposed on the light-receiving layer so as to be opposite an InP substrate 1, wherein the light-receiving layer has a band gap wavelength of 1.65 to 3 μm, the diffusion concentration distribution control layer has a lower band gap energy than InP, a pn junction is formed for each light-receiving element by selective diffusion of an impurity element, and the impurity selectively diffused in the light-receiving layer has a concentration of 5×1016/cm3 or less. A diffusion concentration distribution control layer has an n-type impurity concentration of 2×1015/cm3 or less before the diffusion, the diffusion concentration distribution control layer having a portion adjacent to the light-receiving layer, the portion having a low impurity concentration. The concentration of the impurity element selectively diffused in the diffusion concentration distribution control layer is decreased to be 5×1016/cm3 or less toward the light-receiving layer.
Abstract:
A light receiving element includes an InP substrate that is transparent to light having a wavelength of 3 to 12 μm, a buffer layer located in contact with the InP substrate, and a light-receiving layer having a multiple quantum well structure, the light-receiving layer having a cutoff wavelength of 3 μm or more and being lattice-matched with the buffer layer. In the light receiving element, the buffer layer is epitaxially grown on the InP substrate while the buffer layer and the InP substrate exceed a range of a normal lattice-matching condition, and the buffer layer is constituted by a GaSb layer.
Abstract:
A light-receiving element includes a group III-V compound semiconductor stacked structure that includes an absorption layer having a pn-junction therein. The stacked structure is formed on a group III-V compound semiconductor substrate. The absorption layer has a multi- quantum well structure composed of group III-V compound semiconductors, and the pn-junction is formed by selectively diffusing an impurity element into the absorption layer. A diffusion concentration distribution control layer composed of a III-V group semiconductor is disposed in contact with the absorption layer on a side of the absorption layer opposite the side adjacent to the group III-V compound semiconductor substrate. The bandgap energy of the diffusion concentration distribution control layer is smaller than that of the group III-V compound semiconductor substrate. The concentration of the impurity element selectively diffused in the diffusion concentration distribution control layer is 5×1016/cm3 or less toward the absorption layer.
Abstract:
A light receiving device having small dark current and capable of sensing light in the wavelength range of 2.0 μm to 3.0 μm with high sensitivity is provided. The light receiving device has an InP substrate, and a light receiving layer formed by alternately stacking a larger layer formed of GaInNAsSbP mixed crystal having nitrogen content of at most 5% in 5 group, larger lattice constant than that of InP and thickness between hc and 11hc, the critical thickness hc being determined as hc=b(1−ν cos2α){log(hc/b)+1}/8πf(1+ν)cos λ and a smaller layer formed of GaInNAsSbP mixed crystal having nitrogen content of at most 5% in 5 group, smaller lattice constant than that of InP and thickness between hc and 11hc; absolute value of lattice mismatch of the larger layer and the smaller layer to the InP substrate is at least 0.5% and at most 5%; at least one of the layers has absorption edge wavelength of 2.0 μm to 3.0 μm; total thickness of respective layers is 2.0 μm to 4.0 μm; and thickness-weighted average lattice mismatch is set to be at most ±0.2%.
Abstract:
The present invention provides an image pickup device used to capture an image of an object by receiving light in a near infrared region reflected from the object. The image pickup device includes semiconductor light-receiving elements each having a light-receiving layer with a band gap wavelength of 1.65 to 3.0 μm.
Abstract:
A photodiode array includes a substrate of a common read-out control circuit; and a plurality of photodiodes arrayed on the substrate and each including an absorption layer, and a pair of a first conductive-side electrode and a second conductive-side electrode. In this photodiode array, each of the photodiodes is isolated from adjacent photodiodes, the first conductive-side electrodes are provided on first conductivity-type regions and electrically connected in common across all the photodiodes, and the second conductive-side electrodes are provided on second conductivity-type regions and individually electrically connected to read-out electrodes of the read-out control circuit.
Abstract:
A moisture detector includes a light-receiving element including an absorption layer having a pn-junction, or an array of the light-receiving elements, wherein the absorption layer has a multiquantum well structure composed of a Group III-V semiconductor, the pn-junction is formed by selectively diffusing an impurity element into the absorption layer, and the concentration of the impurity in the absorption layer is 5×1016/cm3 or less. The moisture detector receives light having at least one wavelength included in an absorption band of water lying in a wavelength range of 3 μm or less, thereby detecting moisture.
Abstract:
A circumferential portion of an epitaxial wafer is removed to remove an anomalously grown elevated portion formed in a circumferential chamfer. An epitaxial layer in the circumferential portion is removed with a width q=t to 5t wherein t is the thickness of the epitaxial layer so that the surface of a substrate is exposed. Therefore, cracking of the epitaxial layer in processing steps can be prevented.