Abstract:
An electrical assembly which includes a heat sink that is pressed into an integrated circuit package by a spring fixture. The integrated circuit package is mounted to a substrate. Inserted through the spring fixture is a screw. The screw is also inserted through a clearance hole of the substrate and into an attachment hole of the heat sink to attach the heat sink to the substrate. Other features are disclosed.
Abstract:
A heat dissipation device that includes a base plate having a plurality of substantially circular channels which are substantially concentrically arranged; and a fluid distribution structure adjacent the base plate, wherein the fluid distribution structure has a plurality of inlet conduits extending substantially radially from a central area with each of the plurality of inlet conduits having at least one fluid delivery port extending through the fluid distribution structure to at least one base plate circular channel, and wherein the fluid distribution structure has a plurality of outlet zones defined between adjacent inlet conduits with each of the plurality of outlet zones having at least one fluid removal port extending through the fluid distribution structure to at least one base plate circular channel.
Abstract:
Discussed generally herein are devices that include high density interconnects between dice and techniques for making and using those devices. In one or more embodiments a device can include a bumpless buildup layer (BBUL) substrate including a first die at least partially embedded in the BBUL substrate, the first die including a first plurality of high density interconnect pads. A second die can be at least partially embedded in the BBUL substrate, the second die including a second plurality of high density interconnect pads. A high density interconnect element can be embedded in the BBUL substrate, the high density interconnect element including a third plurality of high density interconnect pads electrically coupled to the first and second plurality of high density interconnect pads.
Abstract:
Some embodiments described herein include apparatuses and methods of forming such apparatuses. In one such embodiment, an apparatus may include a substrate, a first die, and a second die coupled to the first die and the substrate. The substrate may include an opening. At least a portion of the die may occupy at least a portion of the opening in the substrate. Other embodiments including additional apparatuses and methods are described.
Abstract:
A microelectronic combination and a method of making the combination. The combination includes a package substrate including a substrate body having a peripheral surface and contacts disposed at the peripheral surface; and a surface mount component electrically and mechanically bonded to the contacts.
Abstract:
A multi-chip package includes a substrate (110) having a first side (111), an opposing second side (112), and a third side (213) that extends from the first side to the second side, a first die (120) attached to the first side of the substrate and a second die (130) attached to the first side of the substrate, and a bridge (140) adjacent to the third side of the substrate and attached to the first die and to the second die. No portion of the substrate is underneath the bridge. The bridge creates a connection between the first die and the second die. Alternatively, the bridge may be disposed in a cavity (615, 915) in the substrate or between the substrate and a die layer (750). The bridge may constitute an active die and may be attached to the substrate using wirebonds (241, 841, 1141, 1541).
Abstract:
A microelectronic assembly and a method of forming same. The microelectronic assembly comprises: a microelectronic package including a substrate and a die, the die being electrically conductively bonded to the substrate at a front side thereof and further having a backside; a cover plate defining an inlet opening and an outlet opening therethrough; bonding posts mechanically bonding the cover plate to the backside of the die; a sealant body sealingly bonding an inner periphery of a die side of the cover plate to an inner periphery of a backside of the die to form, along with the backside of the die and the cover plate, a cooling fluid chamber. The backside of the die, the cover plate, the bonding posts and the sealant body together define a microelectronic cooling device including the cooling fluid chamber and configured to receive cooling fluid through the inlet opening, to flow the cooling fluid in the chamber between the bonding posts, and to allow the cooling fluid to exit from the outlet opening to cool the die.
Abstract:
A microelectronic package, a method of forming the package and a system incorporating the package. The package includes a substrate; a die bonded to the substrate; and a thermal sensor connected to the substrate.
Abstract:
A method, apparatus and system with a semiconductor package including a thermal interface material dam enclosing a volume of thermal interface material.