Abstract:
According to an aspect, a display device with a touch detecting function includes: a display area in which pixels each composed of a plurality of color areas are arranged in a matrix; a touch detection electrode including a first conductive thin wire extending in a first direction; and a dummy electrode including a plurality of second conductive thin wires; a drive electrode having capacitance for the touch detection electrode. Each of the second conductive thin wires includes a plurality of thin wire pieces extending in a direction different from the first direction and is divided by a slit between the thin wire pieces. A color area in the display area with which the slit overlaps has a different color from a color area in the display area with which a slit closest to the slit in a second direction orthogonal to the first direction overlaps.
Abstract:
A sensor-equipped display device is provided and includes a display panel and a detection electrode. The panel includes a display area in which pixels are arranged with a first pixel pitch in a first direction and a second pixel pitch in a second direction. The electrode includes an pattern having line fragments. The pattern has connection points at which ends of the fragments are connected to each other, and at least part of the connection points is arranged linearly such that an arrangement gaps thereof in the first and second direction is set to a first and second connection point pitch.
Abstract:
An input device is provided and includes substrate; first metal mesh shape electrodes provided on layer of substrate; second metal mesh shape electrodes provided on same layer of the substrate as first metal mesh shape electrodes; second metal connection electrodes each of which connects adjacent two of second metal mesh shape electrodes on same layer as first metal mesh shape electrodes; insulating film covering second metal connection electrodes; first transparent connection electrodes each of which connects adjacent two of first metal mesh shape electrodes on insulating film; and protective film covering first metal mesh shape electrodes, second metal mesh shape electrodes, and first transparent connection electrodes.
Abstract:
There are provided a display panel with a touch detector that allows the touch detection electrodes to be less visible, a touch panel, and an electronic unit having the display panel with a touch detector. The display panel with a touch detector includes: a display layer including a plurality of display elements arranged side by side; and an electrode layer alternately segmented into first regions and second regions along a first direction, the electrode layer including a plurality of first slits arranged side by side to extend in a second direction, and a plurality of second slits each allowing an adjacent pair of the plurality of first slits in the second regions to be in communication with one another.
Abstract:
A detection device is provided including first substrate including first region, second region and third region arranged in first direction, second region arranged between first and third regions; first detection electrode arranged on first substrate; second detection electrode arranged on first substrate and being adjacent to first detection electrode; first electrode coupled to first detection electrode and continuously formed from first to third regions; second electrode coupled to second detection electrode, and continuously formed from first to third regions, convex portions located between first electrode and second electrode in second region and spaced away from first and second electrodes; and protective layer formed on first and second electrodes in first region and not formed on first electrode and second electrode in third region, wherein at least one of convex portions is covered with protective layer, and at least another one of convex portions is not covered with protective layer.
Abstract:
A touch panel is disclosed herein. In an embodiment, the touch panel includes a substrate with first and second surfaces, a drive electrode facing the first surface, a plurality of touch detection electrodes facing the second surface, and a dummy electrode between adjacent touch detection electrodes. Each touch detection electrode includes a first conductive thin wire extending parallel to the first and second surfaces. The dummy electrode includes a second conductive thin wire extending along the first conductive thin wire. The first conductive thin wire includes a first bent portion and a second bent portion alternately arranged with the first conductive thin wire having a zigzag pattern. The second conductive thin wire includes a third bent portion and a slit that are alternately arranged. The third bent portion is arranged on a virtual straight line formed by virtually connecting the first bent portions of one first conductive thin wire.
Abstract:
A detection apparatus includes a substrate, a display area, a peripheral area, a plurality of electrodes, a plurality of terminals, a first wire, and a second wire. The display area is provided on the surface of the substrate. The peripheral area is provided outside the display area. The electrodes are provided to the display area. The terminals are provided in correspondence with the respective electrodes in the peripheral area. The first wire couples an electrode to a terminal. The second wire couples the electrode to the terminal to which the first wire is coupled.
Abstract:
A detection device is provided and includes a first substrate; a plurality of detection electrodes arranged in a first direction and a second direction intersecting the first direction, and located in a display region; a second substrate facing the first substrate; a first conductive layer provided in a peripheral region located outside the display region in planar view, and including a plurality of wires forming a mesh-like pattern; and a second conductive layer electrically coupled to the first conductive layer, the second substrate being located between the second conductive layer and the first substrate, wherein the first conductive layer is arranged to be part of an electrically connected loop around the display region.
Abstract:
A touch panel is disclosed herein. In an embodiment, the touch panel includes a substrate with first and second surfaces, a drive electrode facing the first surface, a plurality of touch detection electrodes facing the second surface, and a dummy electrode between adjacent touch detection electrodes. Each touch detection electrode includes a first conductive thin wire extending parallel to the first and second surfaces. The dummy electrode includes a second conductive thin wire extending along the first conductive thin wire. The first conductive thin wire includes a first bent portion and a second bent portion alternately arranged with the first conductive thin wire having a zigzag pattern. The second conductive thin wire includes a third bent portion and a slit that are alternately arranged. The third bent portion is arranged on a virtual straight line formed by virtually connecting the first bent portions of one first conductive thin wire.
Abstract:
A display device is provided and includes a first substrate comprising first and second areas, first and second terminals located in the first area, and first wiring electrically connects the first terminal with the second terminal; a second substrate comprising a detection electrode for sensing and a third terminal electrically connected to the detection electrode; and connecting member comprising a base layer, and a conductive member electrically connects first and third terminals, wherein the first area is an area in which the second substrate does not overlap the first substrate, the second area is an area in which the first substrate and the second substrate overlap each other, the connecting member does not extend outside first substrate, the conductive member is provided on an undersurface of the base layer, and the undersurface is opposed to the first surface and the third surface.