Abstract:
A detection device is provided including first substrate including first region, second region and third region arranged in first direction, second region arranged between first and third regions; first detection electrode arranged on first substrate; second detection electrode arranged on first substrate and being adjacent to first detection electrode; first electrode coupled to first detection electrode and continuously formed from first to third regions; second electrode coupled to second detection electrode, and continuously formed from first to third regions, convex portions located between first electrode and second electrode in second region and spaced away from first and second electrodes; and protective layer formed on first and second electrodes in first region and not formed on first electrode and second electrode in third region, wherein at least one of convex portions is covered with protective layer, and at least another one of convex portions is not covered with protective layer.
Abstract:
According to one embodiment, a display device includes an insulating substrate including a first surface, and a second surface opposite to the first surface, a circuit board mounted on the first surface, a supporting member adhered to the insulating substrate on the second surface, and an antistatic layer located between the insulating substrate and the supporting member.
Abstract:
According to one embodiment, a display device includes a stacked conductive layer. The stacked conductive layer includes a first conductive layer formed of material containing aluminum, and a second conductive layer provided on the first conductive layer, formed of material different from material of which the first conductive layer is formed, and having a higher visible-light absorptivity than that of the first conductive layer. The first conductive layer includes a side wall formed of an oxide film.
Abstract:
Pixel electrodes each include a pixel plane portion expanded along a surface of the substrate, and a pixel wall portion rising up from the pixel plane portion. Common electrodes each include a common plane portion expanded along a surface of the substrate, and a common wall portion rising up from the common plane portion so as to face the pixel wall portion. Each of the compartment areas has the pixel wall portion on one of right and left sides in the lateral direction, and has the common wall portion on the other of the right and left sides. Molecules of the liquid crystal material are tilted up from the pixel wall portions in a direction of the common wall portion by the electric field. The respective pixel wall portions of the adjacent compartment areas are positioned on opposite sides to each other in the lateral direction.
Abstract:
To suppress generation of low temperature impact bubbles and a damage in an electrode, etc. on a wall structure in manufacturing process, the liquid crystal display device according to the present invention includes a first substrate; a second substrate which is provided so as to face the first substrate; a liquid crystal layer which is provided between the first substrate and the second substrate; a wall structure which is formed on the first substrate; a pixel electrode which is provided at least on a side surface of the wall structure; a common electrode which is formed on the first substrate; and a plurality of pixels which include the pixel electrode and the common electrode, in which a high portion is provided at a portion of the wall structure, and the first substrate comes into contact with the second substrate at the high portion.
Abstract:
In a liquid crystal display device having wall structures, the generation of low-temperature shock bubbles is suppressed. Also, electrodes and the like within substrates are prevented from being damaged during manufacturing. The liquid crystal display device includes a first substrate, a second substrate that is disposed to face the first substrate, a liquid crystal layer that is disposed between the first substrate and the second substrate, wall structures that are formed on the first substrate, pixel electrodes that are disposed on at least side wall of the wall structures, a common electrode that is formed on the first substrate, and a plurality of pixels including the pixel electrodes and the common electrode, in which higher portions are partially disposed on a surface of the second substrate, and the higher portions come into contact with the wall structures to bring the first substrate into contact with the second substrate.
Abstract:
A detection device is provided including first substrate including first region, second region and third region arranged in first direction, second region arranged between first and third regions; first detection electrode arranged on first substrate; second detection electrode arranged on first substrate and being adjacent to first detection electrode; first electrode coupled to first detection electrode and continuously formed from first to third regions; second electrode coupled to second detection electrode, and continuously formed from first to third regions, convex portions located between first electrode and second electrode in second region and spaced away from first and second electrodes; and protective layer formed on first and second electrodes in first region and not formed on first electrode and second electrode in third region, wherein at least one of convex portions is covered with protective layer, and at least another one of convex portions is not covered with protective layer.
Abstract:
In a wall electrode liquid crystal display device, planar distribution of the wall structure and the electrode is optimized to improve a yield. A liquid crystal display device includes a plurality of pixels arranged in a matrix, each of the pixels having an insulator wall structure formed at a border of pixels, a wall electrode formed at a side surface of the wall structure of the border of the pixels, a source electrode which is continuous with the wall electrode and formed of a planar electrode extending in a planar direction, a first common electrode provided between source electrodes at both sides of the pixel to form a retentive capacitance, and a second common electrode provided between wall electrodes on both sides of the pixel. A slit which becomes a border of the wall electrodes of two adjacent pixels is disposed only on a top of the wall structure.
Abstract:
A first electrode 30 for the touch panel is formed on an outer side of a counter substrate 200, and the protection film 210 is formed over the first electrode 30 to cover it. A defect 211 in the protection film 210 is filled in with another protection film 210 by inkjet coating. The surface of the protection film 210 is rubbed to a rough surface finish. The polarization plate 220 is attached to the rough surface of the protection film 210 via an adhesive material 221. Since the defective region is repaired by the formation of the protection film 210, corrosion of the first electrode (wiring) 30 due to the presence of the adhesive material 221 can be prevented, and since the surface of the second protection film 210 is made rough, a resulting increase in adhering surface area enhances the adhesion for attaching the polarization plate 220.
Abstract:
When a protective film is formed so as to cover an electrode, a position of an end portion of the protective film is highly accurately adjusted. An electrode substrate includes a second substrate, and a sensing electrode continuously formed on the second substrate from a first region on an upper surface of the second substrate via a second region on the upper surface of the second substrate over a third region on the upper surface of the second substrate. Also, the electrode substrate includes a concave/convex pattern formed on the sensing electrode or the second substrate in the second region, and a protective film formed in the first region and the second region so as to cover the sensing electrode. An end portion of the protective film on the third region side is positioned on the concave/convex pattern.