Abstract:
In a solid state image pickup apparatus with a photodetecting device and one or more thin film transistors connected to the photodetecting device formed in one pixel, a part of the photodetecting device is formed over at least a part of the thin film transistor, and the thin film transistor is constructed by a source electrode, a drain electrode, a first gate electrode, and a second gate electrode arranged on the side opposite to the first gate electrode with respect to the source electrode and the drain electrode, and the first gate electrode is connected to the second gate electrode every pixel, thereby, suppressing an adverse effect of the photodetecting device on the TFT, a leakage at turn-off TFT, variation in a threshold voltage of the TFT due to an external electric field, and accurately transferring photo carrier to a signal processing circuit.
Abstract:
Sensitivity is freely changeable to another one in correspondence to a photographing mode, and both still image photographing and moving image photographing for example which are largely different from each other in dosage of exposure to radiation and which are also different from each other in required sensitivity are carried out so as to meet that request. A source or drain electrode of a TFT 21 is connected to a signal output circuit 3 through a signal line 14a and an IC 5. A source/drain of a TFT 23 is connected to the signal output circuit 3 through a signal line 14b and the IC 5. Thus, in each pixel 6, any one of the signal lines 14a and 14b is freely selectable when a signal is read out.
Abstract:
A solid-state image pickup device according to the present invention has a plurality of photoelectric conversion elements and a plurality of switching elements. The photoelectric conversion element is formed above at least one switching element, and a shielding electrode layer is disposed between the switching elements and the photoelectric conversion elements. Further, a radiation image pickup device according to the present invention has a radiation conversion layer for directly converting radiation into electric charges, and a plurality of switching elements, and has the radiation conversion layer formed above one or more switching elements, and a shielding electrode layer disposed between the switching elements and the radiation conversion layer.
Abstract:
This invention is to provide a radiation image sensing apparatus capable of automatically adjusting an incident radiation dose without requiring high-speed driving while suppressing any attenuation of the radiation before detection, and a method of manufacturing the same. To accomplish this, a read TFT (1) is formed on an insulating substrate (11). The semiconductor layer (19) and n+-semiconductor layer (20) of an MIS photoelectric conversion element (2) are formed on a second insulating layer (18) that covers the read TFT (1) to be aligned with source and drain electrodes (16) functioning as lower electrodes. The semiconductor layer (21) of a TFT sensor (3) is formed to be aligned with a gate electrode (17) when viewed from the upper side. The semiconductor layers (19, 21) are formed from the same layer. The upper electrode (22) of the MIS photoelectric conversion element (2) is formed on the n+-semiconductor layer (20). Two ohmic contact layers (23) are formed on the semiconductor layer (21). Source and drain electrodes (24) are formed on the two ohmic contact layers (23), respectively.
Abstract:
A semiconductor integrated circuit is fabricated in a substrate having a semiconductor layer and an underlying insulator layer. The fabrication process includes a step of locally oxidizing the semiconductor layer to form a field oxide, during which step the semiconductor layer is protected by a nitride film. The nitride film has both openings to permit local oxidization in the integrated circuit area, and an opening defining an alignment mark adjacent to the circuit area. The alignment mark may be formed either in the semiconductor and insulator layers, or in a part of the nitride film left after the nitride film is removed from the circuit area. In either case, the edge height of the alignment mark is not limited by the thickness of the semiconductor layer. Using the nitride layer to define both the alignment mark and the field oxide reduces the necessary number of fabrication steps.
Abstract:
According to a radiation imaging apparatus, any separate AEC sensor need not be prepared. Additionally, the apparatus main body can be made compact. To accomplish this, the radiation imaging apparatus has a first optical conversion element that converts incident radiation into an electrical signal, and generates image information on the basis of the electrical signal output from the first optical conversion element. Below a portion that is aligned to the gap between the first optical conversion elements, a plurality of second optical conversion elements which detect the incident amount of the radiation from the gap are formed. Exposure control for the radiation or control of the optical conversion elements is executed on the basis of the detection result by the second optical conversion element.
Abstract:
In a solid state image pickup apparatus with a photodetecting device and one or more thin film transistors connected to the photodetecting device formed in one pixel, a part of the photodetecting device is formed over at least a part of the thin film transistor, and the thin film transistor is constructed by a source electrode, a drain electrode, a first gate electrode, and a second gate electrode arranged on the side opposite to the first gate electrode with respect to the source electrode and the drain electrode, and the first gate electrode is connected to the second gate electrode every pixel, thereby, suppressing an adverse effect of the photodetecting device on the TFT, a leakage at turn-off TFT, variation in a threshold voltage of the TFT due to an external electric field, and accurately transferring photo carrier to a signal processing circuit.
Abstract:
A radiographic imaging apparatus, comprising: a photoelectric conversion substrate including a pixel area where there are arranged a plurality of pixels each formed of a photoelectric conversion element and a switching element connected to the photoelectric conversion element in a matrix formed on an insulating substrate, a bias line for applying a bias to the photoelectric conversion element, a gate line for supplying a driving signal to the switching element, and a signal line for reading electric charges converted in the photoelectric conversion element; a wavelength conversion element for converting radiation to light that can be detected by the photoelectric conversion element, the wavelength conversion element being disposed according to a region including the pixel area; and connection wiring having a photoelectric conversion layer connected to at least a plurality of lines of one type, that one type being, the bias lines, the signal lines, and the gate lines, wherein at least a part of the connection wiring is arranged between the region on the insulating substrate and an edge of the insulating substrate. With this arrangement, it becomes possible to provide a panel for a radiographic imaging apparatus and a radiographic imaging apparatus free from deterioration in device performance and device destruction caused by a static electricity even if a substrate is electrically charged in a manufacturing process.
Abstract:
A conversion apparatus includes pixels including switching elements provided on an insulating substrate and conversion elements disposed over the switching elements and connected to the switching elements. Conductive lines are coupled to the pixels and have terminal elements for providing a connection to an external circuit. The terminal elements are disposed in a metal layer that is formed over the conversion elements. The conversion apparatus further includes a transparent conductive layer covering surfaces of the terminal elements, and a protective layer covering edges of the terminal elements and having openings.
Abstract:
The present invention provides a method for manufacturing a microlens in a semiconductor substrate having a first surface and a second surface, comprising the steps of preparing the semiconductor substrate, forming a first resist layer approximately cylindrical in form on the first surface of the semiconductor substrate, reflowing the first resist layer by heat treatment while holding the semiconductor substrate in such a manner that the first surface is normal to a vertical line and placed below the second surface, thereby to deform the first resist layer into a second resist layer approximately hemispherical in form, and simultaneously etching the second resist layer and the semiconductor substrate by means of anisotropic etching to form the corresponding lens in the semiconductor substrate.