Abstract:
Analysis of a system and/or sample involves the use of absorption-encoded micro beads. Each type of micro bead is encoded with amounts of the k dyes in a proportional relationship that is different from proportional relationships of the k dyes of others of the n types of absorption-encoded micro beads. A system and/or a sample can be analyzed using information obtained from detecting the one or more types of absorption-encoded micro beads.
Abstract:
A monitoring and management system (MMS) includes one or more fiber optic cables arranged within or on portions of an energy storage device. Each fiber optic cable includes multiple optical sensors. At least one of the optical sensors is configured to sense a parameter of the energy storage device that is different from a parameter of the energy storage device sensed by at least another optical sensor of the multiple optical sensors. The MMS includes a light source configured to provide light to the one or more fiber optic cables and a detector configured to detect light reflected by the optical sensors. The detector generates an electrical signal based on the reflected light. A processor is coupled to receive the electrical signal, to analyze the electrical signal, and to determine state of the energy storage device based on analysis of the electrical signal.
Abstract:
Input light, such as from an optical sensor or stimulus-wavelength converter, includes one or more light or dark sub-bands. The input light is transmitted, such as through a transmissive layer or transmission component, to obtain effects due to transmission with lateral variation. A detector can, for example, obtain spectral information or other photon energy information about the sub-bands due to lateral variation. For each light or dark sub-band, a transmission component can, for example, provide a respective light or dark spot, and spot position can be used to obtain spectral information such as absolute wavelength or wavelength change. A photosensing component can sense or detect transmitted light or output photons, such as with a photosensor array or a position-sensitive detector. Circuitry can use photosensed quantities to obtain, e.g. a differential signal or information about time of wavelength change.
Abstract:
Input light, such as from an optical sensor or stimulus-wavelength converter, includes one or more light or dark sub-bands. The input light is transmitted, such as through a transmissive layer or transmission component, to obtain effects due to transmission with lateral variation. A detector can, for example, obtain spectral information or other photon energy information about the sub-bands due to lateral variation. For each light or dark sub-band, a transmission component can, for example, provide a respective light or dark spot, and spot position can be used to obtain spectral information such as absolute wavelength or wavelength change. A photosensing component can sense or detect transmitted light or output photons, such as with a photosensor array or a position-sensitive detector. Circuitry can use photosensed quantities to obtain, e.g. a differential signal or information about time of wavelength change.
Abstract:
An implantable product such as an article, device, or system can include analyte and non-analyte containers in parts that can be operated as optical cavities. The product can also include fluidic components such as filter assemblies that control transfer of objects that affect or shift spectrum features or characteristics such as by shifting transmission mode peaks or reflection mode valleys, shifting phase, reducing maxima or contrast, or increasing intermediate intensity width such as full width half maximum (FWHM). Analyte, e.g. glucose molecules, can be predominantly included in a set of objects that transfer more rapidly into the analyte container than other objects, and can have a negligible or zero rate of transfer into the non-analyte container; objects that transfer more rapidly into the non-analyte container can include objects smaller than the analyte or molecules of a set of selected types, including, e.g., sodium chloride. Output light from the containers accordingly includes information about analyte.
Abstract:
Techniques for determining characteristics of a stream of jetted material in a three-dimensional (3D) printer are disclosed. An example 3D printer includes an ejector configured to release molten droplets along a jetting path from the ejector to a build platform. The 3D printer also includes a sensor positioned adjacent to the jetting path and an optical mask positioned adjacent to the jetting path. The optical mask includes a plurality of regions comprising light-blocking regions and light-passing regions. The optical mask is configured to modulate a signal generated by the sensor as the molten droplets travel along the jetting path. The 3D printer also includes a controller to control the 3D printer based on the signal.
Abstract:
Techniques for determining characteristics of a stream of jetted material in a three-dimensional (3D) printer are disclosed. An example system includes an ejector configured to release molten droplets along a jetting path from the ejector to a build platform. The system also includes an optical sensor positioned adjacent to the jetting path and configured to generate an electrical signal in response to light emanating from the molten droplets. The system also includes an optical mask positioned adjacent to the jetting path. The optical mask includes light-blocking regions and light-passing regions to modulate the electrical signal generated by the optical sensor. The system also includes one or more processing devices to receive the electrical signal from the optical sensor, process the electrical signal to identify characteristics of the molten droplets, and control the 3D printer based on the characteristics. The characteristics include an estimated temperature of the molten droplets.
Abstract:
An analyzing system includes a detection area with a transparent window past which an analyte moves and emits or transmits light. One or more polarizing elements receive and polarize the light into respective two or more different polarization components. One or more optical detectors receive the respective two or more polarization components and generate respective at least two signals in response. A processor is coupled to the optical detectors and configured to determine a polarization status of the light from the analyte based on the at least two signals.
Abstract:
A sensor system includes a sensor network comprising at least one optical fiber having one or more optical sensors. At least one of the optical sensors is arranged to sense vibration of an electrical device and to produce a time variation in light output in response to the vibration. A detector generates an electrical time domain signal in response to the time variation in light output. An analyzer acquires a snapshot frequency component signal which comprises one or more time varying signals of frequency components of the time domain signal over a data acquisition time period. The analyzer detects a condition of the electrical device based on the snapshot frequency component signal.
Abstract:
A sensor network comprises at least one lateral optical fiber and at least one longitudinal optical fiber. The lateral fiber comprises optical sensors coupled to a pavement in a transverse orientation relative to a direction of vehicle travel along the pavement. The longitudinal fiber comprises optical sensors coupled to the pavement in a longitudinal orientation relative to the direction of vehicle travel. The optical sensors are configured to produce wavelength shift signals comprising one or more lateral strain signals associated with the lateral fiber and one or more tangential strain signals associated with the longitudinal fiber. A processor is operatively coupled to the sensor network and configured to determine a weight of vehicles moving along the pavement based on the lateral and tangential strain signals. A transmitter is operatively coupled to the processor and configured to transmit the weight of vehicles to a predetermined location.