Abstract:
An foldable electronic device and method are disclosed. The device includes: a foldable housing rotatable about a hinge, enabling folding of a flexible display. The device further includes a touch sensor, a first processor and a second processor. The processors implement the method, including: by the first processor, detecting an external object contacting the flexible display and requesting activation of the second processor based on the detection; and by the second processor: activating and outputting a notification warning of potential damage to the flexible display if the device is folded closed with the external object present on the flexible display.
Abstract:
An apparatus and method for waking up a main processor (MP) in a low power or ultra-low power device preferably includes the MP, and a sub-processor (SP) that utilizes less power than the MP to monitor ambient conditions than the MP, and may be internalized in the MP. The MP and SP can remain in a sleep mode while an interrupt sensor monitors for changes in the ambient environment. A sensor is preferably an interrupt-type sensor, as opposed to polling-type sensors conventionally used to detect ambient changes. The MP and SP may remain in sleep mode, as a low-power or an ultra-low power interrupt sensor operates with the SP being in sleep mode, and awakens the SP via an interrupt indicating a detected change. The SP then wakes the MP after comparing data from the interrupt sensor with values in storage or with another sensor.
Abstract:
An unmanned aerial vehicle is provided, which includes an aerial vehicle body; a camera mounted on the body; a sensor module installed in the body to sense surrounding environment information; a radio communication module installed in the body to perform radio communication with another communication device; at least one processor installed in the body and electrically connected to the camera, the sensor module, and the radio communication module; and a memory electrically connected to the processor, wherein the memory, during flying of the unmanned aerial vehicle, stores instructions to cause the processor to recognize a user's throwing gesture using the unmanned aerial vehicle, to determine a user direction based on a first motion vector generated by the throwing gesture, to predict a camera direction in a standstill location that is a target point of the unmanned aerial vehicle based on the throwing gesture, and to control a photographing direction of the camera.
Abstract:
Provided is a head-mounted display (HMD) apparatus and a method of controlling information output for the HMD apparatus. The HMD apparatus includes a frame in which one or more devices are installable, an interface unit to functionally connect to at least one of one or more devices installed in the frame and an external device, a detection unit to detect a user input, and a processor to perform a process of determining the one or more devices installed in the frame, controlling the interface unit according to the determination result, and controlling the one or more devices installed in the frame and the external device on the basis of user input detected through the detection unit.
Abstract:
The disclosure relates to a method of controlling an image display by an electronic device and an apparatus thereof. A method for controlling an image display by an electronic device according to various examples includes: displaying an image; checking a display state of the image; detecting a movement of the electronic device; when the movement of the electronic device is detected, determining a movement variance based on the movement, adjusting a display portion variance based on the display state and the movement variance; and displaying an image having the changed display portion based on the display portion variance.
Abstract:
A location-based service provision method and system of an electronic device is provided for supporting location-based service even in a sleep mode. The electronic device is provided with a main control unit, a low power sub-control unit, and a sensing unit. The sub-control unit collects sensor information provided by the sensor unit for measuring movement (e.g., speed and direction) of the electronic device, and calculates first location information based on the sensor information. The sub-control unit provides the location-based service based on the first location information.
Abstract:
An electronic device for controlling short-range wireless communication is provided. The electronic device includes a short-range communication module configured to transmit/receive a short-range communication signal to/from at least one neighboring device and a control module configured to control, when a pairing connection with a first neighboring device is established through the short-range communication module, at least one of turning on/off of a scan operation for waiting for reception of a signal from at least one second neighboring device and configuring a cycle of the scan operation.
Abstract:
This disclosure relates to an apparatus and method for managing the memory of a mobile terminal. The mobile terminal includes a main system that operates with normal power, and a subsystem that operates with low power. The subsystem operates at least one feature of the mobile terminal while the main system is in a sleep mode. Binary data may be used to operate the at least one feature of the mobile terminal. When binary data is stored in memory operatively coupled to the main system, the binary data is retrieved and copied to memory operatively coupled to the subsystem, allowing the subsystem to operate the feature while the main system is in sleep mode.
Abstract:
An apparatus and method for waking up a main processor (MP) in a low power or ultra-low power device preferably includes the MP, and a sub-processor (SP) that utilizes less power than the MP to monitor ambient conditions than the MP, and may be internalized in the MP. The MP and SP can remain in a sleep mode while an interrupt sensor monitors for changes in the ambient environment. A sensor is preferably an interrupt-type sensor, as opposed to polling-type sensors conventionally used to detect ambient changes. The MP and SP may remain in sleep mode, as a low-power or an ultra-low power interrupt sensor operates with the SP being in sleep mode, and awakens the SP via an interrupt indicating a detected change. The SP then wakes the MP after comparing data from the interrupt sensor with values in storage or with another sensor.
Abstract:
An electronic device according to an embodiment may comprise a touch input unit, a first PMIC, a first switching circuit, and a battery controller. The battery controller may be configured to control the first switching circuit such that power is supplied from the battery to the touch input unit and no power is supplied from the battery to the first PMIC. The battery controller may be configured to, while power is supplied from the battery to the touch input unit and no power is supplied from the battery to the first PMIC, obtain an input through the touch input unit. The battery controller may be configured to control, based on obtaining the input, the first switching circuit such that power is supplied from the battery to the first PMIC.