Abstract:
A system of a machine includes a network of a plurality of sensing/control/identification devices distributed throughout the machine. Each of the sensing/control/identification devices is associated with at least one sub-system component of the machine and operable to communicate through a plurality of electromagnetic signals. Shielding surrounding at least one of the sensing/control/identification devices to contain the electromagnetic signals proximate to the at least one sub-system component. A communication path is integrally formed in/on a component of the machine to route a portion of the electromagnetic signals through the component. A remote processing unit is operable to communicate with the network of the sensing/control/identification devices through the electromagnetic signals.
Abstract:
A system includes a network of a plurality of sensing/control/identification devices distributed throughout a machine, each of the sensing/control/identification devices associated with at least one sub-system component of the machine and operable to communicate through a plurality of electromagnetic signals. Shielding surrounds at least one of the sensing/control/identification devices to contain the electromagnetic signals proximate to the at least one sub-system component. A communication path is integrally formed in a component of the machine to route a portion of the electromagnetic signals through the component and a remote processing unit operable to communicate with the network of the sensing/control/identification devices through the electromagnetic signals, wherein at least a portion of the sensing/control/identification devices comprise a wide band gap semiconductor device.
Abstract:
A magnetic communication system for a gas turbine engine may include a sensor coupled to a microcontroller. A low frequency radio-frequency identification integrated chip may be coupled to the microcontroller. A first coupling circuit may be coupled to the low frequency radio-frequency identification integrated chip and may include a first coil winding wound within a first core. The first coil winding operatively associated with a low frequency magnetic flux.
Abstract:
A component includes a substrate formed from a metallic or ceramic material and a thermal barrier coating positioned on the substrate. The component also includes a ceramic reflective coating integral with the thermal barrier coating. The reflective coating includes an arrangement of features configured to reflect at a wavelength at which peak emission from a heat source occurs. A method of making a component includes positioning a thermal barrier coating on the component and determining a wavelength emitted from a heat source. The method of making a component also includes producing an arrangement of features using a metamaterial to form a reflective coating and integrating the reflective coating with the thermal barrier coating.
Abstract:
The present disclosure relates generally to a sensor including inductively coupled coils. Alignment of the coils may be maintained by constraining relative movement of the structures into which each of the coils is embedded. Alignment of the coils may be established by maintaining the transponder coil stationary while moving the reader coil with respect to the transponder coil and monitoring the current at the source supplying the reader coil. When the current at the source is at an extreme value (substantially maximized or minimized), the reader coil and the transponder coil are aligned. Additionally disclosed is an iterative process for designing coil geometries and resonant circuits for a sensor employing inductively coupled coils.