Abstract:
A portable, compact closed circuit ventilation device for manual ventilation of a patient undergoing a surgical or medical procedure that requires sedation as well as emergency management of respiratory failure. One example embodiment includes a closed breathing circuit having a manually squeezable bag, a carbon dioxide absorption canister, a plurality of valves, a gas port and a plurality of sensors for measuring Tidal Volume (TV), Peak Airway Pressure (PAP) and End Tidal CO2 (ETCO2). Another example embodiment includes an open breathing circuit having a bag, valves and sensors. A monitor displays the sensor measurements during the respiratory phases. In a spontaneously breathing patient the device may be used to assess the adequacy of patient's respiratory efforts. During manual or assisted ventilation, the monitor assures safe and efficacious ventilation by the closed breathing circuit.
Abstract:
The invention provides a synthetic polypeptide of Formula I′: or an amide, an ester or a salt thereof, wherein X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12 and X13 are defined herein. The polypeptides are agonist of the APJ receptor. The invention also relates to a method for manufacturing the polypeptides of the invention, and its therapeutic uses such as treatment or prevention of acute decompensated heart failure (ADHF), chronic heart failure, pulmonary hypertension, atrial fibrillation, Brugada syndrome, ventricular tachycardia, atherosclerosis, hypertension, restenosis, ischemic cardiovascular diseases, cardiomyopathy, cardiac fibrosis, arrhythmia, water retention, diabetes (including gestational diabetes), obesity, peripheral arterial disease, cerebrovascular accidents, transient ischemic attacks, traumatic brain injuries, amyotrophic lateral sclerosis, burn injuries (including sunburn) and preeclampsia. The present invention further provides a combination of pharmacologically active agents and a pharmaceutical composition.
Abstract:
Low pressure oxygen or other breathable gas is supplied from a tank or other source to a patient or other person through a flexible plastic tube, and a safety valve system is connected between the source and the tube. The valve system includes a valve member having a tubular outlet portion and supported for axial movement within a valve body having an inlet connected to the gas source. Fluid passages are formed within the valve member and valve body, and the valve member shifts axially to an open position in response to connecting the flexible tube to the tubular outlet portion of the valve member. The valve member shifts to a closed position in response to removing the tube from the tubular outlet portion, and the supply gas holds the valve member in the closed position.
Abstract:
A supply valve for supplying air to a wearer of an air respirator is attached to a facepiece and includes an inflow port for medium-pressure air (S1), a supply port for the medium-pressure air (S1) with respect to the facepiece, and a diaphragm. The supply valve includes a cylindrical housing and a slider that is reciprocally slidable on the inner peripheral surface of the housing in an axial direction thereof. The housing includes a pilot valve seat urged toward a pilot valve on an outer side of the one end portion in the axial direction and a main valve seat on an inner side of an opposite end portion in the axial direction. The inflow port is formed between the one end portion and the opposite end portion. The slider includes the pilot valve contactable with the pilot valve seat and a main valve urged toward the main valve seat.
Abstract:
Exhalation valve including a diaphragm for opening and closing an outlet of an exhalation flow path for guiding exhaled air to the outside air, a back chamber provided opposite the exhalation flow path in the diaphragm and forming a space together with the diaphragm, and a pump unit fixed to the circumference of the back chamber for adjusting the air pressure inside the back chamber by feeding and discharging of air to and from the back chamber. The diaphragm closes the outlet of the exhalation flow path when the air pressure inside the exhalation flow path is lower than the air pressure inside the back chamber, and opens the outlet of the exhalation flow path when the air pressure inside the exhalation flow path is higher than the air pressure inside the back chamber.
Abstract:
A system comprises a respiratory delivery arrangement adapted to cover at least one respiratory orifice of a patient. The system also comprises a first conduit having a first end and a second end, the second end connected to the respiratory delivery arrangement. A positive pressure is provided to the respiratory orifice via the first conduit and a second conduit having a third end and a fourth end, the fourth end connected to the respiratory delivery arrangement. An exhaled gas is extracted from the respiratory orifice by one or both of a valve configured to redirect flow through the respiratory delivery arrangement and a venturi opening.
Abstract:
Embodiments are directed to a ventilation device and method to be used on a patient during CPR. In one embodiment, the ventilation device comprises a housing having at least one opening for interfacing with a patient's airway, at least one valve configured to permit outflow of respiratory gases/air from the airway to ambient, a release mechanism for opening and closing an inlet passage to permit inflow of respiratory gases/air to the airway, and a control device for controlling the opening/closing of the inlet passage.
Abstract:
In accordance with the present disclosure, there is provided a mask for achieving positive pressure mechanical ventilation (inclusive of CPAP, ventilator support, critical care ventilation, emergency applications), and a method for a operating a ventilation system including such mask. The mask of the present disclosure includes a piloted exhalation valve that is used to achieve the target pressures/flows to the patient. The pilot for the valve may be pneumatic and driven from the gas supply tubing from the ventilator. The pilot may also be a preset pressure derived in the mask, a separate pneumatic line from the ventilator, or an electro-mechanical control. The mask of the present disclosure may further include a heat and moisture exchanger (HME) which is integrated therein.
Abstract:
According to various embodiments, methods and systems for determining pressure in an inflatable cuff of a tracheal tube may employ pressure transducers associated with a cuff inflation line. The pressure transducers may be implemented to provide continuous or intermittent cuff pressure. Also provided are inflation assemblies or other devices that incorporate pressure transducers. The inflation assemblies may be coupled to the tracheal tubes via the inflation line.
Abstract:
A device for treating a patient suffering from obstructive sleep apnea or snoring can include an expiratory valve connected to a manifold. The expiratory valve can include a body portion including a feedback port configured to be connected to an air flow generator. The expiratory valve can include a plunger at least partially disposed in the body portion. The expiratory valve can include a pressurizing chamber positioned between an end of the plunger and an end of the expiratory valve. The pressurizing chamber can be configured to receive air from the air flow generator through the feedback port.