Abstract:
A fluid filter assembly includes a filter housing, a filter element, and an outlet conduit coupled to the filter housing to discharge liquid fluid from a filtered-fluid region in the filter element. An elongated grommet is mounted on the outlet conduit and positioned in the filter housing to seal against an outer surface of the filter element and an inner surface of the filter housing.
Abstract:
The device includes a closure element (20), which closes an opening (18) of a fuel tank (12) and has a cup-shaped receptacle (22), which opens toward the outside of the fuel tank (12), contains the fuel filter (24), and can be closed by a cover element (36), which can be detachably fastened to the closure element (20). An elastic sealing ring (46), which is clamped between the closure element (20) and the cover element (36), seals the receptacle (22). In the vicinity of the sealing ring (46), the closure element (20) has at least one opening (52) via which the receptacle (22) communicates with the interior of the fuel tank (12). When the cover element (36) is fastened onto the closure element (20), the sealing ring (46), starting from a non-deformed original shape, is elastically deformed in such a way that it closes the at least one opening (52). When the cover element (36) is detached from the closure element (20), the sealing ring (46) returns to its original shape in which it unblocks the at least one opening (52). This produces a pressure relief into the interior of the fuel tank (10) when the cover element (36) is detached.
Abstract:
A filter element assembly has at least two cylindrically shaped and concentrically arranged filter media sleeves each connected at one end thereof to an inlet plate and each connected at the other end to a closed end terminal plate. Openings are provided in the inlet plate to permit entry of liquid to be filtered into the annular space between the filter sleeves. The closed end terminal plate prevents flow of unfiltered liquid from the annular space between the sleeves so as to force the liquid through the porous media of the sleeves to effect filtration.
Abstract:
A filter element assembly includes two cylindrically shaped and concentrically arranged flexible media sleeves (302, 301), wherein the sleeves are respectively supported against radial flow by an inner and outer cage (325, 330). Respective ends of the sleeves are permanently affixed to an inlet plate 303 and a terminal plate 304. The inlet plate includes a closed central area 315 to prevent unfiltered liquid from entering the cylindrical space 306 defined by the inner filter sleeve. The inlet plate also includes openings 316 to allow unfiltered liquid into the annular space 305 between the sleeves. An end cap 340 is permanently affixed to the inlet plate and includes a support on an upper surface thereof for supporting the assembly within a housing.
Abstract:
A fluid filter has a filter element for filtering fluid. A nutplate having a threaded mounting portion is adapted to threadedly engage an externally threaded filter head. An inner seal retainer is positioned between the nutplate and the filtering element in order to define a hollow interior. The inner seal retainer has at least one stiff hollow web extending in a radial direction adapted to provide a space for transmitting fluid between the nutplate and the filter element. An inner radial seal is attached to the inner seal retainer for sealing the filter element with the filter head.
Abstract:
A fuel filter comprises a filter head having an inlet and an outlet. A filter element is connectable to a nipple portion in the filter head. An actuating projection supported by the element is engageable with a valve element in the nipple portion to open flow through the nipple portion when the filter element is attached to the filter head. The filter head includes an annular threaded peripheral flange, and the element includes a corresponding annular threaded peripheral flange which together cooperate to secure the element to the head. A manual priming pump in the filter head includes a pair of check valves to control the flow of fluid through the head when priming the filter. A heater assembly includes a heater pan which encloses the heater elements and also includes the nipple portion, formed unitary therewith.
Abstract:
The present invention relates to an arrangement in an oil filter with integral oil cooler with a filter material (7) in the form of a tubular casing, which is enclosed in a housing (1). The latter is defined by a cylindrical wall (4) and two ends (5, 6), one (5) of which can be opened for changing the filter material (7). Two essentially concentric annular circulation chambers (8, 9) are arranged in front of the cylindrical wall. Of these the one that connects with the inside of the housing (12) is intended to accommodate the flow of oil and the other which has an inlet opening (10) and an outlet opening (11) is intended to accommodate the flow of coolant. The coolant circulation chamber (8), which is the outer of the two circulation chambers, is divided by a partition wall (25) into two essentially equal sub-chambers (8a, 8b) into each of which an opening (10, 11) respectively opens. In the partition wall (25) there is a passage (19a) connecting the sub-chambers (3a, 3b), the passage being situated equidistant from the mouths (10, 11) of the inlet and outlet openings in the sub-chambers (8a, 8b), in order to obtain a symmetrical flow of coolant in the circulation chamber (8).
Abstract:
A fuel filter comprises a head (10, 96) having an inlet (14, 100) and an outlet (16,102). The head has a pumping portion (18, 104) which includes a vertically extending stepped bore (46, 120) having movable bodies (86, 88; 132, 140) therein. The fluid area between the bodies (54, 126) is connected to a variable volume area (77, 160). The head is connected to an element (98, 266) by a nipple portion (186) which has a valve element (196) therein. An actuating projection (222, 272) is engagable with said valve element to open flow through said nipple portion when the correct element is attached thereto. The failure of the nipple portion to sufficiently extend in the element, which occurs when an improper element is attached, prevents flow through the nipple portion and renders the filter inoperable. The actuating projection is further supported on a central portion (220, 276) which prevents connection to a nipple portion that extends too far into the element. As a result, only the proper element may be mounted to the head.
Abstract:
A fuel filter assembly (10) for filtering diesel fuel includes a filter head (12), a spin-on replaceable element (13) and a collection bowl (15) removable from the element. The element includes a casing (52) with a turned-in edge portion at a lower end. An adaptor ring (69) is supported on said edge portion inside the element and includes an annular threaded portion (71). The collection bowl has an outer peripheral wall (74) with an annular threaded portion engaging the threaded portion of the adaptor ring. The outer peripheral wall of the bowl has an annular shoulder abutting the turned-in edge portion of said casing to clamp said casing between the adaptor ring and the bowl, when the bowl is attached to the element. The adaptor ring has a plurality of spaced ribs (70) with projections that extend upward and radially outward to maintain the filter medium (55) spaced from an inner wall surface of the casing. A resilient member (68) holds the filter medium between a top plate (62) and the adaptor ring.
Abstract:
A fuel filter assembly (10) includes a filter head (12) having a fuel inlet (18) and a fuel outlet (20). A filter element (14) is attached to said filter head. A collection bowl (16) is attached to the filter element. The filter element includes an outer wall (36) with upper and lower turned in edge portions (62, 72). Upper and lower ring shaped members (64, 74) are in abutting contact with said turned in edge portions and are positioned intermediate of said edge portions and end caps (46, 48) of an annular filter medium (38). The end caps include central openings (54) surrounded by circular resilient gaskets (58). The filter element (14) is attachable by either of its ring shaped members to the filter head and collection bowl.