Abstract:
Systems, methods, and computer program products are disclosed that overcome the deficiencies of traditional steam engines and internal combustion engines. In an embodiment, a system is disclosed for generating reaction products having elevated temperature and pressure. The system comprises a first chamber including a reactor to decompose hydrogen peroxide to generate oxygen and water vapor. The system further comprises a second chamber including a reactor to catalytically combust a mixture of the generated oxygen and a fuel to generate reaction products having elevated temperature and pressure. The system further comprises a passageway to receive reaction products exiting the second chamber and to channel the reaction products to come into contact with external surfaces of the first and second chambers to thereby transfer heat to the first and second chambers, and an outlet to allow the reaction products to exit the system.
Abstract:
The present invention relates to a method for selective hydrogenation of acetylene to ethylene, comprising the steps of: i) introducing a feed comprising acetylene and hydrogen into a reactor containing a supported catalyst, wherein the reactor is a fixed bed reactor containing the supported catalyst additionally diluted with a solid diluent, or the reactor being a wash coated reactor wherein the supported catalyst is coated on reactor walls; and ii) hydrogenating of acetylene to ethylene in the presence of the supported catalyst.
Abstract:
The invention relates to a method for closed/open loop control of a total lambda value of a reformer (10) comprising at least a combustion zone (12) and an evaporation zone (14) connected to the combustion zone (12). In accordance with the invention for closed/open loop control of the total lambda value, closed loop control of the lambda value of the combustion zone (12) and open loop control of the fuel performance supplied to the evaporation zone (14) is provided.The invention relates furthermore to a system with a reformer (10) comprising at least a combustion zone (12) and an evaporation zone (14) connected to the combustion zone (12) and with a a controller (26) for closed/open loop control of a total lambda value. In accordance with the invention the controller (26) is suitable for closed/open loop control of the total lambda value by closed loop control of the lambda value of the combustion zone (12) and open loop control of the fuel performance supplied to the combustion zone (12) and the evaporation zone (14) each.
Abstract:
A fuel system for a propulsion system includes a fuel deoxygenating device and a catalytic module containing catalytic materials. The fuel deoxygenating device removes dissolved oxygen from the fuel to prevent formation of insoluble materials that can potentially foul the catalyst and block desirable catalytic reactions that increase the usable cooling capacity of an endothermic fuel.
Abstract:
An autothermal reformer according to the principles of the present invention comprises a first stage that selectively receives a fuel flow, a first oxidant flow, and a steam flow. The first stage has a first portion of a catalyst bed. The fluids within the first stage are routed through the first portion of the catalyst bed and react. There is a second stage downstream from and communicating with the first stage. The second stage receives the fluids from the first stage and also selectively receives a second oxidant flow. The second oxidant flow and the fluids received from the first stage flow through a second portion of a catalyst bed and further react.
Abstract:
A fuel processing assembly adapted to produce hydrogen gas from a volatile feedstock. The fuel processing assembly includes a fuel processor, such as a steam reformer. The fuel processing assembly further includes a feed assembly adapted to deliver a volatile feedstock, such as propane, to the fuel processor. In some embodiments, the fuel processing system includes a fuel cell stack that includes at least one fuel cell adapted to produce electrical power from hydrogen gas produced by the fuel processor.
Abstract:
Method and apparatus for carrying out highly exothermic catalyzed reactions, like so-called oxidative reactions, in pseudo-isothermal conditions, for example the reaction for producing nitric acid and the reaction for producing formaldehyde.
Abstract:
A process for the startup of an ATR which does not contain an ignition means is provided. Also provided is a process to ascertain ATR catalyst activity prior to introduction of sufficient oxidant to form a flammable feed mixture.
Abstract:
A synthetic gas generator and gas reactor test system. The system is configurable to provide a number of alternative flow paths, each with different furnace and reactor configurations. Various types of reactors, and combinations of two or three reactors, may be installed and tested. Injected agents, such as reducing agents, are injected in a manner that prevents unwanted reactions with the test gas. The system is especially useful for testing vehicle emissions aftertreatment devices.
Abstract:
The present invention provides a process and apparatus for treating contaminated gas. A contaminated gas containing volatile organic compounds is continuously introduced into a reactor to allow the gas to contact a metal oxide catalyst and an oxidant for a period of time. The concentration of the volatile organic compounds can be thus reduced. The treated gas is then continuously emitted from the reactor. The concentration of the organic compounds of the emitted gas and/or the concentration of the oxidant are continuously monitored, and the oxidant feeding amount is controlled according to the monitored concentration. By means of the process of the present invention, volatile organic compound-containing waste gas with high humidity can be effectively treated, and the utility rate of the oxidant can be increased.