Abstract:
A high temperature, high pressure chemical digestion vessel comprising an inner container within which digestion is to take place under high temperature and high pressure conditions. The container is provided with a vent. A replaceable, rupturable pressure release disk is provided having a predetermined rupture pressure for being sealingly interposed in covering relation to the vent to seal the container and thereby enclose a substance to be digested in the container. The disk ruptures and releases pressure within the container if pressure within the container reaches the predetermined rupture pressure. The pressure release disk comprises a flat sheet material. A seal cap is provided for holding the pressure release disk in sealing relation to the vent in the container. An outer pressure resisting-casement is provided for receiving the container therein and providing support to the container. In one embodiment, a pressure chamber is defined between the seal cap and the pressure release disk to transmit pressure information to a pressure sensor exterior to the vessel and to isolate a test sample from the exterior of the vessel.
Abstract:
A pressure proof reactor vessel and the method of making such vessel wherein the vessel has a cylindrical one-piece outer wall and a cylindrical one-piece cylindrical inner liner, which liner has a smooth continuous interior surface spaced radially inwardly from the outer wall and concentric thereto. The inner cylindrical wall is formed from a one-piece material with its radial thickness being substantially less than the radial thickness of the outer cylindrical wall. Support means in the form of a spiral is positioned in said space between the cylindrical outer wall and the cylindrical inner liner defining a pathway for the flow of coolant between the outer wall and the inner wall. The support spiral is secured to the outer surface of the one-piece cylindrical inner liner prior to assembling of the inner liner to the outer cylindrical one-piece outer wall.
Abstract:
A spring-containing device comprises a housing including a removable end plate (2). A plurality of screw-threaded tie rods (7) have nuts (28) holding the end plate (2) in assembly in the housing. A safety plate (14) is disposed within the housing at a fixed spacing from the end plate (2) but short of a movable spring-retaining plate (8) at its closes approach to the end plate (2). The safety plate (14) is fast on a shaft (15) rotatable in the end plate (2) and adapted (at 16) to be turned from outside. The safety plate (14) has keyhole-shaped openings through which the respective tie rods (7) extend and the tie rod (7) have safety collars (18) which can only pass through the keyhole-shaped openings when the safety plate (14) is in a certain angular position.
Abstract:
The present invention provides an improved valve. This valve opens and closes in response to a change in the physical environment of the valve. This valve is particularly suited as a relief valve in a microwave system-based, closed vessel digestion procedure. This valve includes a pressure-deformable, resilient wall member having a fluid vent port, and an obstructing member that cooperates with the wall member to open and close the valve. Also provided is a lidded vessel employing this improved valve, an apparatus that includes a microwave system and this lidded vessel, and methods using this improved valve.
Abstract:
An automatically openable lid for a receptacle structure has a safety device for preventing any accident in the presence of an obstacle in the range of opening and closing movements of the lid. The device includes a safety guard extending around a front surface of the lid and beyond a rear surface thereof. The guard is mounted on the lid in a semi-fixed manner such that the guard is normally kept immovable relative to the lid during the movement thereof and such that the guard is pivotally movable relative to the lid when the guard is hit by any obstacle during the movement of the lid. Responsive to the movement of the guard relative to the lid, a detecting means is operable to energize a brake for stopping the movement of the lid.
Abstract:
A corrosion-resistant end plate of cladding type for high pressure vessels such as a urea synthesizing tower and ethanol synthesizing equipment includes a cladding member having a curved external surface complementary to the curved internal surface of a cup-shaped solid pressure-resistant member of a suitable thickness for internal pressure. The cladding member is welded as a plurality of divided segments within the cap-shaped solid pressure-resistant member. With the above arrangement, an expensive corrosion-resistant material need not be used as the pressure-resistant member.
Abstract:
A safety interlock device is provided for preventing the opening of a vessel containing a pressurized fluid. In a typical application, the interlock device may be used in industrial applications to prevent the inadvertent unscrewing of a cap from the end of a large pressure vessel containing a hazardous gas. A pressure port end of the interlock body is adapted for threaded engagement with the vessel and is open to vessel pressure. A pressure-responsive locking piston movable within the body prohibits removal of a stem when vessel pressure exceeds a selected minimum pressure. A chain may be secured at each end to the stem and vessel cap, so that the cap cannot be unscrewed to open the container unless the stem is first removed. In one embodiment, the locking piston is prevented from manual override by the position of a second piston and a plurality of ball members locked in a groove.
Abstract:
A high pressure vessel is provided with a hermetic feedthru assembly from the inside, i.e. from the high pressure side. Specifically and preferably, pressure fittings employing the principle of cone and thread for sealing can be employed. Electrical, optical and fluid connectors are contemplated.
Abstract:
A multi-stage reactor for hydrogenating coal slurry in a pressure vessel for pressures of up to 700 bar, preferably of up to 350 bar, with inlets for gas and coal slurry through the reactor bottom, an outlet for sludge, gases and vapors in the reactor top, and dividing trays in the pressure vessel, by means of which trays the individual reaction stages are separated from one another, wherein each dividing tray has a progressively reducing cross-section, with passage orifices, over its entire lower face, so as to prevent coal slurry caking onto the tray in the direction of flow of the reactants (gas and coal slurry).
Abstract:
A method of controlling inlet valves of a compression reactor consists in that in the process of operation of the reactor 1 pressure in its working spaces 4, 5 and supply lines 7, 6 is continuously measured, the sign of a pressure differential (.DELTA.P) between said working spaces 4, 5 and the respective supply lines 7, 6 is determined, at the instant the sign of the pressure differential (.DELTA.P) changes from "minus" to "plus" a command to relieve the inlet valves 8, 9 of all control actions, except the pressure differential, is produced, and at the instant the sign of the pressure differential (.DELTA.P) changes from "plus" to "minus" a command to read a preset time interval (.tau.) is supplied, at the expiration of which interval a command to close the inlet valves 8, 9 of the reactor 1 is produced. A device for controlling inlet valves of a compression reactor comprises drives 10, 11 actuating the inlet valves 8, 9 of the reactor 1, pressure pickups 14, 15, 16, 17 arranged in the working spaces 4, 5 and in the supply lines 6, 7, comparators 18, 19 connected to the outputs of the pickups 14, 15, 16, 17, units 12, 13 to control the drives 10, 11, the inputs of which are connected through time relays 20, 21 to the outputs of the comparators 18, 19 and the outputs of which are connected to the drives 10, 11, and a chronometer 22 connected with one of the comparators 18, 19.