Abstract:
An improved process for regenerating ion exchange resin, includes a regeneration step of displacing captured ions from the resin to regenerate its ion-capture functionality, followed by one or more fluid-employing post-regeneration steps such as a fluid displacement or rinse, a fluid transporting or mixing, and a rinse down to quality. To avoid problems of early leakage of weakly held ions such as boron, the post-chemical or postdisplacement steps use water that is essentially free of boron, or otherwise avoid localized contamination in the regenerated resin which is used in bottles or beds (30). A two-stage polish may be operated with modified lead/lag bottles. A detector (D) for an indicator condition (conductivity, silica breakthrough) between stages determines when to shift the lag bottle forward, and periodically both bottles are replaced.
Abstract:
The disclosed invention is a fixed bed ion exchange water purification system. It employs a combination of electronically controlled process steps and specific systems configurations to duplicate the effects of moving resin beds from one operating position to another as is required in moving bed ion exchange water purification systems. The invention combines features of single fixed bed ion exchange systems with those of a moving bed system. The invention applies to the treatment of water having typical industrial and drinking water concentrations of various ions.
Abstract:
A filtration and demineralization apparatus that is capable of reducing the cost of the apparatus and building cost by using an apparatus whose height is limited, and that is also capable of ensuring sufficient treatment capacity, as well as good operability, is provided. A filtration and demineralization apparatus 10 comprises a vessel 20 in a form of a body of revolution; a hollow columnar body 40 that is located in an internal space of the vessel 20, one end 40a of the columnar body being connected to an inner surface of the vessel 20 along an entire circumference of the end, and the other end 40b of the columnar body forming an opening; and a partition plate 44 that is connected to the other end 40b of the hollow columnar body along an entire circumference of the other end 40b, the partition plate being configured to separate an inside space or an outside space of the hollow columnar body 40 as an independent space in the vessel. The partition plate 44 has a circulation port 43 that allows water that is to be treated to pass therethrough. The independent space in the vessel that is separated by the partition plate functions as a filtration chamber 41 in which filter elements are loaded, and the inside space or the outside space of the hollow columnar body that is not separated as the independent space by the partition plate functions as a demineralization chamber 22, the water that was treated in the filtration chamber being adapted to enter the demineralization chamber through the circulation port 43.
Abstract:
A process for the regeneration of loaded ion-exchange resin comprising (a) providing loaded resin for regeneration; (b) providing first stage and third stage regenerant suitable for regenerating loaded resin; (c) providing a plurality of regeneration vessels; (d) filling a regeneration vessel with a desired amount of the loaded resin before filling another regeneration vessel; (e) once a regeneration vessel has been filled, contacting the loaded resin within the vessel with first stage regenerant in a plug flow to provide a first stage regenerated resin; (f) contacting the first stage regenerated resin with third stage regenerant in a plug flow to provide regenerated resin and (g) removing and collecting third stage regenerant from a vessel containing regenerated resin and adding the collected regenerant to the first stage regenerant.
Abstract:
The disclosed invention is a fixed bed ion exchange water purification system. It employs a combination of electronically controlled process steps and specific systems configurations to duplicate the effects of moving resin beds from one operating position to another as is required in moving bed ion exchange water purification systems. The intention combines features of single fixed bed ion exchange systems with those of a moving bed system. The invention applies to the treatment of water having typical industrial and drinking water concentrations of various ions.
Abstract:
A method for treating a fluid by providing a raw fluid to a process tank. The raw fluid may be water having varying degrees of contamination or another type of fluid. The method further consists of adding an ion exchange resin to the process tank to form a raw fluid/ion exchange resin mixture. After the fluid has been sufficiently contacted with the ion exchange resin, treated fluid is removed from the process tank through a membrane filter located within the process tank. The method is completed by regenerating the ion exchange resin within the same process tank.
Abstract:
A fluid-treating device containing a distributing device having a revolving disc in a stationary housing, and a motor for rotating the disc. Feed and discharge pipes are connected to an end wall of the housing and open onto the revolving disc. Stationary vessels are connected to the housing via connecting pipes. The revolving disc includes a plurality of passageways that open on the outer side of the disc. For a number of positions of the disc, the passageways are each connected to one of the connecting pipes, while feed and discharge pipes open via ring-like ducts into different passageways.
Abstract:
A method for treating a fluid by providing raw fluid to a process tank, adding an ion exchange resin to the process tank to form a raw fluid/ion exchange resin mixture, removing treated fluid from the process tank through a membrane filter located within the process tank, and regenerating the ion exchange resin within the process tank. The method may be set up as a batch process or as a continuous process using a magnetic ion exchange resin and continuous withdrawal of the magnetic ion exchange resin from the process tank by use of a magnetic separator. The method may also consist of reusing the regenerant in multiple regeneration steps and periodically filtering the regenerant to restore its regenerative properties. Alternatively, an upflow bed of ion exchange resin may be used to treat the raw fluid before membrane filtration.
Abstract:
The invention concerns a fluid treating device, containing a distributing device (2) with a revolving disc (2) in a stationary housing (13), and a motor (15) for rotating the revolving disc (12). Feed and discharge pipes (3, 5, 6; 4, 7, 8) are connected to an end wall of the housing (13) and open onto the revolving disc (12). Stationary vessels (1) are connected to said housing (13) via connecting pipes (10, 11). In the revolving disc (12) are provided passageways (44-49) which open on the round outer side of the disc (12). For a number of positions of this disc (12), the passageways (44-49) are each connected to one of the above-mentioned connecting pipes (10, 11), while feed pipes (3, 5, 6) and discharge pipes (4, 7, 8) open via ring-like ducts (24, 29, 30, 50-52 and 37-38, 53-55) into different passageways (44-49).
Abstract:
An ion exchange method for fluid treatment is disclosed. The method includes steps for supplying, circulating and with withdrawing regenerant fluid to an ion exchange media bed in different sequences, in different flow directions and for different durations of time.