Abstract:
Provided is an apparatus for removing impurities from feed water comprising (A) a loading tank comprising a top, a bottom, and an interior, and further comprising (i) an inlet that conveys the feed water to a water distributor, (ii) a grid located above the water distributor, (iii) an outlet located at a level higher than the grid, (iv) an outlet at the bottom of the loading tank, (B) a regeneration tank comprising (i) a first inlet near the top of the regeneration tank, (ii) a second inlet at the top of the regeneration tank, (iii) an outlet at the bottom of the regeneration tank, (C) a pipe that conveys material from the bottom of the regeneration tank to the top of the loading tank, wherein said regeneration tank is located below the loading tank. Also provided is a method of removing impurities by using such an apparatus.
Abstract:
A system is disclosed for facilitating maintenance of water treatment apparatus at multiple locations and which include multiple components designed with an operational life that is greater than an apparatus exchange duration. The system includes tracking the usage of each component and determining an exchange date for an existing apparatus. A refurbished apparatus is sent to the location when the existing apparatus is at or near its exchange date. The operational life remaining for each component in the existing apparatus is determined based on the usage of the component. Each component that has operational life remaining that is less than the exchange duration for use as a refurbished apparatus is removed and replaced or refurbished so as to create a refurbished unit.
Abstract:
A method for harmless disposal and resource utilization of resin desorption liquid generated in the ion exchange process is provided. Resin desorption liquid is channeled into an electrolytic tank, which is arranged with an inlet and an outlet; the anode and the cathode within the electrolytic tank are separately connected to a stabilized power supply; both the direct and indirect oxidation process and occurred at the anode can decompose the organic pollutants in the desorption liquid; with necessary replenishment of fresh regeneration agent, the treated desorption liquid can exert excellent performance in regenerating saturated resin; the recycled use of resin desorption liquid is therefore realized, which consequently avoids unnecessary waste of regeneration agent and reduces the final yield of the desorption liquid. This method is characterized by being convenient in operation, without addition of extra reagents, without secondary pollution, and suitable for the desorption liquid with wide pH variations.
Abstract:
Cross-linked cyclocopolymers made up of one or more quaternary ammonium salts and sulfur dioxide as monomers. One of the quaternary ammonium salts is also an aspartic acid derivative. The cross-linked copolymers include a repeating unit with multiple chelating centers that different metal ions can bind to. The cross-linked copolymers are zwitterionic or anionic, and can be in either an acidic form or a basic form. A method for removing metal ions from an aqueous sample with these cross-linked copolymers is also described.
Abstract:
Methods for producing or regenerating an iodinated anion exchange resin are presented. The methods include treating an iodide loaded anionic resin with an aqueous solution comprising an in situ formed I2 to produce the iodinated resin. The iodinated resins show reduced and stable levels of iodine elution compared to resins produced by conventional methods. Methods and systems for purifying water are also presented.
Abstract:
The invention provides a system and process for separating residual magnetic resin from a liquid stream by passing the stream through or over permanent magnets located within the stream wherein the process also includes a means for releasing any resin retained by the permanent magnets and capturing the released resin.
Abstract:
A water softener is composed of a cabinet of a resin bed, a brine tank, and a brine valve. The improved water softener has an outer housing having sides, a bottom, and an open top. A wall is disposed within the housing forming a brine chamber and a resin bed chamber for housing ion-exchange resin beads. Cross-contamination of the resin beads by the brine is prevented.
Abstract:
A method is provided for removing an inorganic ionic species or organometallic ion contaminant, or combination contaminants, including such as arsenic, chromium, bromide, bromate, perchlorate, and/or others from water which contains an unacceptably high concentration of the contaminant(s). The method includes treating the water with an ion exchange resin, preferably a magnetic ion exchange resin such as MIEX® Resin, which is capable of adsorbing the inorganic ionic species contaminant(s), and regenerating and recycling the ion exchange resin back to the process. The method produces potable water from ground water containing such contaminants and eliminates breakthrough and chromatographic peaking problems observed with conventional ion exchange systems.
Abstract:
An apparatus and method for the treatment and purification of drinking water combines the use of an ion-exchange resin and a membrane filter (12) in a single process tank. The ion-exchange resin is removed from the process tank (14) and regenerated for reuse.
Abstract:
Magnetic polymer resins capable of efficient removal of actinides and heavy metals from contaminated water are disclosed together with methods for making, using, and regenerating them. The resins comprise polyamine-epichlorohydrin resin beads with ferrites attached to the surfaces of the beads. Markedly improved water decontamination is demonstrated using these magnetic polymer resins of the invention in the presence of a magnetic field, as compared with water decontamination methods employing ordinary ion exchange resins or ferrites taken separately.