Abstract:
The present invention provides a ballast circuit and method for fabricating the same for multi-electrode corona discharge arrays. The circuit comprises a conductive plastic material and at least one corona electrode protruding from the conductive plastic material. The distance between the plastic material and the corona electrode varies and controls the electrical resistance and determines the voltage breakdown of the circuit. Additionally, a particle collection surface may preferably be located within the conductive plastic material or preferably be separated from the material depending on the circuit design and configuration.
Abstract:
An air particle precipitator and a method of air filtration comprise a housing unit; a first conductor in the housing unit; a second conductor in the housing unit; and a carbon nanotube grown on the second conductor. Preferably, the first conductor is positioned opposite to the second conductor. The air particle precipitator further comprises an electric field source adapted to apply an electric field to the housing unit. Moreover, the carbon nanotube is adapted to ionize gas in the housing unit, wherein the ionized gas charges gas particulates located in the housing unit, and wherein the first conductor is adapted to trap the charged gas particulates. The air particle precipitator may further comprise a metal layer over the carbon nanotube.
Abstract:
A discharge device for generating a streamer discharge includes a discharge electrode and a counter electrode. The discharge electrode is in the a shape of a wire or rod and is disposed substantially parallel to the counter electrode. Thus, even when a tip of the discharge electrode becomes worn out, a shape of the tip of the discharge electrode remains unchanged and a distance between the discharge electrode and the counter electrode remains unchanged. As a result, even when the tip of the discharge electrode becomes worn out, the streamer discharge stability will not fall.
Abstract:
The invention is directed towards an efficient and ozone free ion generator in which the ion emitter is open to the surrounding space while the collector is provided by electrical ground remote and away from the ion emitter. In the case of a household generator, the ground is the electrical ground of the house. In the case of a car generator, the ground is the car frame. A safety circuit is arranged to turn the high voltage off if a hand or other body member (or pet) comes near or touches the exposed emitter to prevent electrical shock.
Abstract:
An improved filter element for use in an electrostatic precipitation air cleaning device, the filter element including rod electrodes arranged through a stack of alternating fluted plastic sheets and plate electrodes. Successive plate electrodes are arranged to make contact with an alternating one or the other of the rod electrodes. The plate and rod electrodes may be composed of high impedance materials such as paper and plastic, respectively. An arrangement for removably inserting a filter element into an air cleaning device is provided. The arrangement also removably provides electrical connectivity between the filter element and the air cleaning device. The filter element can thus be readily removed and re-installed by a user.
Abstract:
Disclosed is an air purifier with a small size, having an excellent air purifying capacity, enabling to prevent a large amount of ozone from being generated, the ozone harmful to a human body. The air purifier includes a case, a pair of discharge electrodes provided at upper and lower parts of the case, a ground electrode provided between the pair of discharge electrodes, a pair of insulating dielectric layers provided on upper and lower surfaces of the ground electrode, and a power source coupled respectively to the ground electrode and the discharge electrode so as to supply voltage thereto.
Abstract:
Embodiments of the present invention are related to air conditioner systems and methods. In accordance with one embodiment of the present invention, a system includes at least one emitter electrode and at least one collector electrode that is downstream from the emitter electrode. The emitter electrode has a plurality of pins axially arranged about a center. Preferably, the pins are arranged in a circle about the center. A driver electrode is located within the interior of the collector electrode. Preferably, although not necessarily, the driver electrode is insulated. A high voltage source provides a voltage potential to at least one of the emitter electrode and the collector electrode to thereby provide a potential difference therebetween. The embodiments as described herein have some or all of the advantages of increasing the particle collection efficiency, increasing the rate and/or volume of airflow, reducing arcing, and/or reducing the amount of ozone generated.
Abstract:
Electro-kinetic air transporter and conditioner systems and methods are provided. A system includes a pin emitter electrode and a ring collector electrode located downstream from the emitter electrode. A driver electrode, which is preferably insulated, is located at least partially within an interior of said ring collector electrode. A high voltage source provides a voltage potential to at least one of said emitter electrode and said collector electrode to thereby provide a potential difference therebetween. The driver electrode may or may not be at a same voltage potential as the emitter electrode, but should be at a different voltage potential than the collector electrode. This description is not intended to be a complete description of, or limit the scope of, the invention. Other features, aspects, and objects of the invention can be obtained from a review of the specification, the figures, and the claims.
Abstract:
Embodiments of the present invention are related to electro-kinetic air transporter-conditioner systems and methods. An electro-kinetic air conditioner device includes an inner hollow cylindrical mesh electrode having a first radius and an outer hollow cylindrical mesh electrode having a second radius that is larger than the first radius. The second hollow cylindrical mesh electrode surrounds the first hollow cylindrical mesh electrode. At least one emitter electrode is located within and generally parallel to the first hollow cylindrical electrode. A voltage source provides a high voltage potential difference between each emitter electrode and the inner hollow cylindrical mesh electrode. The outer hollow mesh electrode is preferably grounded, as well as insulated.
Abstract:
An apparatus for removing particles from a gas in a high purity flowing gas system is provided which includes a flow tube inserted inline in the flowing gas system having an inlet and an outlet, a pressure sealed, electrically insulated feed-through integral to the flow tube, an emitter inserted through the feed-through into the flow tube to create a plasma in the gas to charge particles in the gas, and a collector surface in proximity to the emitter; whereby an electric field between the emitter and the collector surface draws the particles in the gas to the collector surface. An apparatus for removing particles from a gas in a high purity gas containment vessel is also provided which includes a gas containment vessel having an inlet orifice, a pressure sealed, electrically insulated feed-through sealingly attached adjacent the inlet orifice, an emitter inserted through the feed-through into the gas containment vessel to create a plasma in the gas to charge particles in the gas; and a collector surface in proximity to the emitter, whereby an electric field between the emitter and the collector surface draws the particles in the gas to the collector surface. Methods of using the above apparatus are also provided.