Abstract:
The present invention discloses water-based mining collector compositions containing dodecylmethyl sulfide. Floatation processes for recovering metals, such as copper and molybdenum, from ores using the mining chemical collector compositions also are disclosed.
Abstract:
A process is provided for separation of at least one metal sulfide from a mixed sulfide concentrate. The process includes: subjecting the mixed sulfide concentrate to flotation in which at least one sulfide including antimony, arsenic and a first metal is floated and at least one sulfide including a second metal is depressed. The flotation yields a first metal concentrate having the at least one sulfide including antimony, arsenic and the first metal and a second metal concentrate having the at least one sulfide including the second metal. The first metal concentrate is leached to yield a further concentrate and a leach solution. The further concentrate includes the first metal and the leach solution includes soluble antimony and soluble arsenic. The process further includes oxidizing the leach solution to yield an antimony precipitate and an arsenic solution, and forming a stable arsenic compound from the arsenic solution.
Abstract:
The present invention discloses thiol compositions containing monothiotricyclodecenes, dithiotricyclodecanes, and intermolecular sulfide compounds, as well as mining chemical collector compositions containing such thiol compositions. Flotation processes for recovering metals, such as copper and molybdenum, from ores using the mining chemical collector compositions also are disclosed.
Abstract:
The invention provides methods and compositions for improving a froth flotation type separation. The method uses a microemulsion to improve the effectiveness of a frother. The improvement allows for low dosages of frother to work as well as much greater amounts of non-microemulsified frother.
Abstract:
Cationic reverse flotation methods, systems, and processes for producing a marketable iron oxide concentrate from an iron oxide mineral slurry (“treatment slurry”), wherein the iron oxide content of the concentrate is greater than the iron oxide content of the treatment slurry, include introducing the treatment slurry into a flotation cell, together with a collector, a frother and optionally an iron oxide depressant, and recovering two flow streams from the flotation cell, namely a froth fraction (also referred to as a flotation tail fraction) and a sink material fraction (also referred to as the flotation concentrate), wherein the treatment slurry in the flotation cell is maintained at a Natural pH.
Abstract:
Compounds of the formulae: RO—X—NH2 (Ia); RO—X—NH3+Y− (Ib); RO—X—NH—Z—NH2 (IIa); and RO—X—NH—Z—NH3+Y− (IIb), in which X is an aliphatic alkylene group containing 2 to 6 carbon atoms; Z is an aliphatic alkylene group containing 2 to 6 carbon atoms; Y− is an anion; and R is an aliphatic iso C13H27-group with average branching degree ranging from 1.5 to 3.5. The compounds are particularly suitable as flotation collectors for enriching an iron mineral from a silicate-containing iron ore.
Abstract:
The invention provides methods and compositions for improving a froth flotation type separation. The method uses a microemulsion to improve the effectiveness of a collector. The improvement allows for low dosages of collector to work as well as much greater amounts of non-microemulsified collector.
Abstract:
There is provided methods for separating a target material from a raw material by mixing the raw material with water to form a slurry, adding a collector compound to the slurry to modify a relative hydrophobicity of a surface of the target material, adding a facilitator compound to enhance the modification of the relative hydrophobicity of the surface, and forming a froth including a concentrate of the target material. Disclosed methods may also include adding a facilitator compound to a raw material slurry that has been treated with a collector compound and a reagent for neutralizing the collector compound.
Abstract:
The invention provides methods and compositions for green compositions and technologies. In an embodiment, the present invention provides a method of separating a first material from a second material. For example, the method can comprise mixing the first material and the second material in a slurry with a beneficiation composition. The beneficiation composition can comprise one or more glyceride and fatty acid mixtures extracted from a fuel ethanol process. Air bubbles can be provided in the slurry to form bubble-particle aggregates with the first material and the bubble-particle aggregates can be allowed to be separated from the second material.
Abstract:
Collector compositions and methods for making and using same to purify one or more crude materials are provided. The collector composition can include one or more amidoamines having the chemical Formula I and one or more amines having the chemical Formula IV, where a weight ratio of the amidoamine to the amine can be about 99:1 to about 1:99.