Abstract:
A micromechanical component having a substrate (10) made from a substrate material having a first doping type (p), a micromechanical functional structure provided in the substrate (10) and a cover layer to at least partially cover the micromechanical functional structure. The micromechanical functional structure has zones (15; 15a; 15b; 15c; 730; 740; 830) made from the substrate material having a second doping type (n), the zones being at least partially surrounded by a cavity (50; 50e-f), and the cover layer has a porous layer (30) made from the substrate material.
Abstract:
Providing a columnar structure having a uniform shape and excellent heat resistance and mechanical strength that is formed on a substrate of silicon, a method of preparing the structure, and a DNA separation device prepared by the method. A structure has, on a substrate made of silicon, columns of which main surface is covered with a thermally oxidized film. The columns are made of the thermally oxidized film only or of the thermally oxidized film and silicon. The thermally oxidized film formed on the columns is connected to those formed on the surface or inside of the substrate.
Abstract:
The invention provides a nanostructure including an anodized film including nanoholes. The anodized film is formed on a substrate having a surface including at least one material selected from the group consisting of semiconductors, noble metals, Mn, Fe, Co, Ni, Cu and carbon. The nanoholes are cut completely through the anodized film from the surface of the anodized film to the surface of the substrate. The nanoholes have a first diameter at the surface of the anodized film and a second diameter at the surface of the substrate. The nanoholes are characterized in that either a constriction exists at a location between the surface of the anodized film and the surface of the substrate, or the second diameter is greater than the first diameter.
Abstract:
Using a p-type silicon substrate 1 having on its front surface an n-type silicon layer 2 with a thickness of twice or more of the desired thickness for the beam, an electrochemical etching is performed from the rear surface and the etching is stopped at the beam thickness which is twice or more of the desired thickness. Etching for the beam part 8 from the rear surface proceeds along with the etching for the gap part 9 from the front surface, and a desired thickness for the beam can be formed by completing the etching at the timing when the gap part is opened through.
Abstract:
Disclosed are electropolishing methods for etching a substrate in self alignment. A hole is formed in a substrate in self alignment by using an electropolishing system, wherein a reaction tube, an etchant solution, an electrode, a constant current source and the silicon substrate, said etchant solution being contained in a space confined by the reaction tube and the substrate, which is attached to one end of the reaction tube in such a way that the bottom of the substrate may be toward the interior of the space, said constant current source being connected with a metal layer formed on the substrate and the electrode. The substrate is made to be porous by flowing a constant current and etched by the action of the etchant solution while breaking the current. In addition to being economical, the methods can determine the position and size of the hole accurately and precisely. Further, neither chemical damage nor mechanical impact is generated on the substrate.