Abstract:
The present disclosure relates to an integrated chip structure. The integrated chip structure includes a MEMS (microelectromechanical systems) actuator. The MEMS actuator has an anchor. A proof mass continuously wraps around the anchor in a closed loop. One or more curved cantilevers are coupled between the proof mass and a frame. The frame wraps around the proof mass. The one or more curved cantilevers include curved outer surfaces arranged directly between a sidewall of the frame and a sidewall of the proof mass, as viewed in a top-view.
Abstract:
Aspects of this disclosure relate to driving a capacitive micromachined ultrasonic transducer (CMUT) with a pulse train of unipolar pulses. The CMUT may be electrically excited with a pulse train of unipolar pulses such that the CMUT operates in a continuous wave mode. In some embodiments, the CMUT may have a contoured electrode.
Abstract:
A method of processing a semiconductor substrate having a first conductivity type includes, in part, forming a first implant region of a second conductivity type in the semiconductor substrate where the first implant region is characterized by a first depth, forming a second implant region of the first conductivity type in the semiconductor substrate where the second implant region is characterized by a second depth smaller than the first depth, forming a porous layer within the semiconductor substrate where the porous layer is adjacent the first implant region, and growing an epitaxial layer on the semiconductor substrate thereby causing the porous layer to collapse and form a cavity.
Abstract:
A MEMS device is formed by forming a sacrificial layer over a substrate and forming a first metal layer over the sacrificial layer. Subsequently, the first metal layer is exposed to an oxidizing ambient which oxidizes a surface layer of the first metal layer where exposed to the oxidizing ambient, to form a native oxide layer of the first metal layer. A second metal layer is subsequently formed over the native oxide layer of the first metal layer. The sacrificial layer is subsequently removed, forming a released metal structure.
Abstract:
Techniques for preventing bending/buckling of suspended micro/nanostructures during oxidation are provided. In one aspect, a method for oxidizing a structure is provided. The method includes providing the structure having at least one suspended element selected from the group consisting of: a microstructure, a nanostructure and a combination thereof; surrounding the at least one suspended element in a cladding material; and oxidizing the at least one suspended element through the cladding material, wherein the cladding material physically constrains and thereby prevents distortion of the at least one suspended element during the oxidation.
Abstract:
The disclosure relates to a method and apparatus for preventing extrusion or spiking of a metal atom from a metallization layer to other layers of a silicon wafer. In one embodiment, the method includes forming a silicon-on-ship device with a MEMS component on the substrate. The MEMS component may include one or more metal or metallic alloys. To prevent spiking from the MEMS component, the sides thereof can be coated with one ore more spacer or barrier layers. In one embodiment, oxygen plasma and thermal oxidation methods are used to deposit spacers. In another embodiment, an oxide layer is deposited over the wafer, covering the substrate and the MEMS component. Selective etching or anisotropic etching can be used to remove the oxide layer from certain regions of the MEMS and the substrate while covering the sidewalls. An amorphous silicon layer can then be deposited to cover the MEMS device.
Abstract:
Disclosed herein is a method of smoothing a trench sidewall after a deep trench silicon etch process which minimizes sidewall scalloping present after the silicon trench etch. The method comprises exposing the silicon trench sidewall to a plasma generated from a fluorine-containing gas, at a process chamber pressure within the range of about 1 mTorr to about 30 mTorr, for a time period within the range of about 10 seconds to about 600 seconds. A substrate bias voltage within the range of about −10 V to about −40 V is applied during the performance of the post-etch treatment method of the invention.
Abstract:
Providing a columnar structure having a uniform shape and excellent heat resistance and mechanical strength that is formed on a substrate of silicon, a method of preparing the structure, and a DNA separation device prepared by the method. A structure has, on a substrate made of silicon, columns of which main surface is covered with a thermally oxidized film. The columns are made of the thermally oxidized film only or of the thermally oxidized film and silicon. The thermally oxidized film formed on the columns is connected to those formed on the surface or inside of the substrate.
Abstract:
A method for forming a micro cavity is disclosed. In the method for forming the cavity, a first layer is formed on a silicon layer and a trench is formed in the silicon layer by selectively etching the silicon layer. A second and a third layers are formed on the trench and on the silicon layer. Etching holes are formed through the third layer by partially etching the third layer. A cavity is formed between the silicon layer and the third layer after the second layer is removed through the etching holes. Therefore, the cavity having a large size can be easily formed and sealed in the silicon layer by utilizing the volume expansion of the silicon or the poly silicon layer. Also, a vacuum micro cavity can be formed according as a low vacuum CVD oxide layer or a nitride layer formed on the etching holes which are partially opened after the thermal oxidation process by controlling the size of the etching holes concerning the other portion of the poly silicon layer.
Abstract:
A method of forming apparatus including a force transducer on a silicon substrate having an upper surface, the silicon substrate including a dopant of one of the n-type or the p-type, the force transducer including a cavity having spaced side walls and a diaphragm supported in the cavity, the diaphragm extending between the side walls of the cavity, comprising the steps of: a. implant in the substrate a layer of a dopant of the one of the n-type or the p-type; b. deposit an epitaxial layer on the upper surface of the substrate, the epitaxial layer including a dopant of the other of the n-type or the p-type; c. implant spaced sinkers through the epitaxial layer and into electrical connection with the layer of a dopant of the one of the n-type or the p-type, each of the sinkers including a dopant of the one of the n-type or the p-type; d. anodize the substrate to form porous silicon of the sinkers and the layer; e. oxidize the porous silicon to form silicon dioxide; and f. etch the silicon dioxide to form the cavity and diaphragm.