Process for making bulk heavy metal fluoride glasses
    61.
    发明授权
    Process for making bulk heavy metal fluoride glasses 失效
    制造大量重金属氟化物玻璃的工艺

    公开(公告)号:US4666486A

    公开(公告)日:1987-05-19

    申请号:US779401

    申请日:1985-09-24

    Inventor: Joseph J. Hutta

    CPC classification number: C03B17/04 C03B5/021 C03B5/16 C03B2201/82 Y10S65/16

    Abstract: Heavy metal fluoride glasses are made by a process that requires high purity fluoride constituent compounds, some of which are further refined by sublimation. Handling occurs in a protective atmosphere such as argon. The charge is placed in a sealed modified optical growth furnace having the ability of atmosphere control, heat control and position control of the charge. The charge is firstly raised to its fusion temperature, then to an admixture temperature, and finally to a higher temperature. The charge is immediately removed from the heating source and quickly cooled through the critical crystallization region. The total heating and cooling time being about one to two hours. The resulting glass ingot is partially annealed. The HMFG of (Zr or Hf)F.sub.4 -BaF.sub.2 -LaF.sub.3 -AlF.sub.2 consistently exhibits low levels of both light scattering and bulk OH contact, along with very reproducible hardness, thermal parameters, and UV and IR edge absorption behavior.

    Abstract translation: 重金属氟化物玻璃通过需要高纯度氟化物成分化合物的方法制备,其中一些化合物通过升华进一步精制。 处理发生在保护气氛如氩气中。 将电荷置于具有气体控制,热控制和电荷位置控制能力的密封改性光学生长炉中。 首先将电荷升高至其熔融温度,然后升至混合物温度,最后升至更高的温度。 立即从加热源中取出电荷并迅速通过临界结晶区域冷却。 总加热和冷却时间约为1至2小时。 所得玻璃锭部分退火。 (Zr或Hf)F4-BaF2-LaF3-AlF2的HMFG一致地表现出轻度散射和体积OH接触的低水平,以及非常可重复的硬度,热参数和UV和IR边缘吸收行为。

    Optical fibers having a fluoride glass cladding and method of making
    63.
    发明授权
    Optical fibers having a fluoride glass cladding and method of making 失效
    具有氟化物玻璃包层的光纤和制造方法

    公开(公告)号:US4519826A

    公开(公告)日:1985-05-28

    申请号:US484764

    申请日:1983-04-14

    Applicant: Danh C. Tran

    Inventor: Danh C. Tran

    CPC classification number: C03B19/04 C03B37/01268 C03B2201/82 Y10S65/16

    Abstract: Fluoride glass cladded optical fibers are produced by rotationally casting a fluoride glass cladding tube, introducing core glass melt therein to form a preform, and drawing the preform into a fiber. Disclosed are methods whereby the process may be adopted to the production of multimode, stepped index profile waveguides, single mode waveguides, and waveguides having parabolic index profiles.

    Abstract translation: 氟化物玻璃包覆光纤通过旋转浇铸氟化玻璃包覆管,将核心玻璃熔体引入其中以形成预制件并将预成型件拉制成纤维来生产。 公开的方法是该方法可以用于生产具有抛物线折射率分布的多模,阶梯折射率分布波导,单模波导和波导的生产。

    ULTRA SMALL CORE FIBER WITH DISPERSION TAILORING
    66.
    发明申请
    ULTRA SMALL CORE FIBER WITH DISPERSION TAILORING 有权
    超小型纤维与分散定型

    公开(公告)号:US20090245729A1

    公开(公告)日:2009-10-01

    申请号:US12407663

    申请日:2009-03-19

    Abstract: Various embodiments of optical fiber designs and fabrication processes for ultra small core fibers (USCF) are disclosed. In some embodiments, the USCF includes a core that is at least partially surrounded by a region comprising first features. The USCF further includes a second region at least partially surrounding the first region. The second region includes second features. In an embodiment, the first features are smaller than the second features, and the second features have a filling fraction greater than about 90 percent. The first features and/or the second features may include air holes. Embodiments of the USCF may provide dispersion tailoring. Embodiments of the USCF may be used with nonlinear optical devices configured to provide, for example, a frequency comb or a supercontinuum.

    Abstract translation: 公开了用于超小芯纤维(USCF)的光纤设计和制造工艺的各种实施例。 在一些实施例中,USCF包括至少部分地被包括第一特征的区域包围的芯。 USCF还包括至少部分围绕第一区域的第二区域。 第二个区域包括第二个特征。 在一个实施例中,第一特征小于第二特征,并且第二特征具有大于约90%的填充分数。 第一特征和/或第二特征可以包括气孔。 USCF的实施例可以提供色散调整。 USCF的实施例可以与被配置为提供例如频率梳或超连续谱的非线性光学装置一起使用。

    MICROSTRUCTURED OPTICAL FIBERS AND MANUFACTURING METHODS THEREOF
    67.
    发明申请
    MICROSTRUCTURED OPTICAL FIBERS AND MANUFACTURING METHODS THEREOF 有权
    微结构光纤及其制造方法

    公开(公告)号:US20090201953A1

    公开(公告)日:2009-08-13

    申请号:US11913417

    申请日:2006-05-03

    Abstract: Optical devices and a method for manufacturing these devices. One optical device includes a core region having a first medium of a first refractive index n1, and includes a cladding region exterior to the core region. The cladding region includes a second medium having a second refractive index n2 higher than the first refractive index n1. The cladding region further includes a third medium having a third refractive index n3 lower than the first refractive index n1. The third medium is dispersed in the second medium to form a plurality of microstructures in the cladding region. Another optical device includes a plurality of core regions including at least one core having a doped first medium, and includes a cladding region exterior to the plurality of core regions. The core regions and the cladding region include a phosphate glass.

    Abstract translation: 光学装置及其制造方法。 一个光学器件包括具有第一折射率n1的第一介质的核心区域,并且包括在核心区域外部的包层区域。 包层区域包括具有比第一折射率n1高的第二折射率n2的第二介质。 包层区域还包括具有比第一折射率n1低的第三折射率n3的第三介质。 第三介质分散在第二介质中以在包层区域中形成多个微结构。 另一种光学器件包括多个芯区,包括至少一个具有掺杂的第一介质的芯,并且在多个芯区域的外部包括包层区域。 核心区域和包层区域包括磷酸盐玻璃。

    Photonic bandgap optical waveguidewith anti-resonant core boundary
    69.
    发明申请
    Photonic bandgap optical waveguidewith anti-resonant core boundary 有权
    具有反谐振核心边界的光子带隙光波导

    公开(公告)号:US20070009216A1

    公开(公告)日:2007-01-11

    申请号:US10550095

    申请日:2004-03-22

    Abstract: Improved photonic band-gap optical fibre. The present invention relates in particular to improved photonic band-gap optical fibres that can confine light to a core region of the fibre by the action of both a photonic band-gap cladding and an antiresonant core boundary, at the interface between the core and cladding. According to embodiments of the present invention, a fibre has a core, comprising an elongate region of relatively low refractive index, a photonic bandgap structure arranged to provide a photonic bandgap over a range of wavelengths of light including an operating wavelength of light, the structure, in a transverse cross section of the waveguide, surrounding the core and comprising elongate relatively low refractive index regions interspersed with elongate relatively high refractive index regions and a relatively high refractive index boundary at the interface between the core defect and the photonic bandgap structure, the boundary having a thickness around the core such that the boundary is substantially anti-resonant at the operating wavelength of the fibre. In preferred embodiments, the core boundary is a relatively constant thickness region of glass around a hollow core.

    Abstract translation: 改进的光子带隙光纤。 本发明特别涉及改进的光子带隙光纤,其可以通过光纤带隙包层和反谐振核心边界在芯和包层之间的界面处将光限制在光纤的核心区域 。 根据本发明的实施例,光纤具有芯,其包括相对低折射率的细长区域,光子带隙结构被布置成在包括光的工作波长的光的波长范围内提供光子带隙,该结构 在波导的横截面中,围绕芯并且包括细长的相对较低的折射率区域,其散布有细长的相对高的折射率区域和在芯部缺陷和光子带隙结构之间的界面处的相对高的折射率边界, 边界具有围绕芯的厚度,使得边界在纤维的工作波长处基本上反共振。 在优选实施例中,芯边界是围绕中空芯的玻璃相对恒定的厚度区域。

    Low-temperature fabrication of glass optical components
    70.
    发明申请
    Low-temperature fabrication of glass optical components 有权
    玻璃光学元件的低温制造

    公开(公告)号:US20040079114A1

    公开(公告)日:2004-04-29

    申请号:US10283402

    申请日:2002-10-29

    Abstract: In one aspect, a method is provided for molding from glass complex optical components such as lenses, microlens, arrays of microlenses, and gratings or surface-relief diffusers having fine or hyperfine microstructures suitable for optical or electro-optical applications. In another aspect, mold masters or patterns, which define the profile of the optical components, made on metal alloys, particularly titanium or nickel alloys, or refractory compositions, with or without a non-reactive coating are provided. Given that molding optical components from oxide glasses has numerous drawbacks, it has been discovered in accordance with the invention that non-oxide glasses substantially eliminates these drawbacks. The non-oxide glasses, such as chalcogenide, chalcohalide, and halide glasses, may be used in the mold either in bulk, planar, or power forms. In the mold, the glass is heated to about 10-110null C., preferably about 50null C., above its transition temperature (Tg), at which temperature the glass has a viscosity that permits it to flow and conform exactly to the pattern of the mold.

    Abstract translation: 在一个方面,提供了一种用于从诸如透镜,微透镜,微透镜阵列的玻璃复合光学部件以及具有适合于光学或电光学应用的精细或超细微结构的光栅或表面浮雕扩散器成型的方法。 在另一方面,提供了限定在具有或不具有非反应性涂层的金属合金,特别是钛或镍合金或耐火材料组合物上制成的光学部件的轮廓的模具主体或图案。 鉴于来自氧化物玻璃的成型光学部件具有许多缺点,根据本发明已经发现,非氧化物玻璃基本上消除了这些缺点。 非氧化物玻璃,例如硫族化物,卤化铝和卤化物玻璃可以以体积,平面或电力形式用于模具中。 在模具中,将玻璃加热至约10-110℃,优选约50℃,高于其转变温度(Tg),在该温度下,玻璃具有允许其流动并准确地符合 模具图案。

Patent Agency Ranking