Abstract:
An infrared transmitting chalcogenide glass lens having precision optical surfaces of different curvature radii is molded. A pair of molds having different curvature radiuses from each other, and a bushing which controls the thickness of the lens is provided. A block of chalcogenide glass is placed within the cavity. The upper mold, the lower mold and the block of glass are heated with the mold having a smaller curvature radius being at a higher temperature than the other mold. The glass is then pressed, cooled, and the resulting lens is removed from the mold assembly.
Abstract:
Halide fibers are protected by coatings up to 2.mu.m thick of chalcogenide glasses, e.g. glasses based on compounds of S, Se or Te with Ge or As. The coatings are deposited on the fiber preform by ion deposition sputtering. Preferably the preform is etched by directing a stream of inert ions at it. Most suitably the etching immediately precedes the coating.
Abstract:
In order to obtain substances that are optically transparent in the infrared range, usable in the manufacture of optical fibers or radiation emitters, a metal or metalloid chalcogenide other than an oxide is produced by a double-substitution reaction between a starting chalcogen compound--particularly a hydride such as H.sub.2 S, H.sub.2 Se or H.sub.2 Te--and a salt of the desired metal or metalloid, e.g. a chloride. The starting compound and the reactant salt preferably are vaporized at a temperature below the melting point of the resulting metal chalcogenide which thereupon precipitates in the reaction chamber.
Abstract:
A method for producing a sulfide glass ceramic, including reacting a lithium compound, a phosphorus compound and a halogen compound in a solvent that contains a hydrocarbon and an ether compound to produce a sulfide glass that contains a Li element, a P element, a S element and one or more halogen elements, and heating the sulfide glass to produce a sulfide glass ceramic.
Abstract:
The present invention is generally directed to a photonic bad gap fiber and/or fiber preform with a central structured region comprising a first non-silica based glass and a jacket comprising a second non-silica based glass surrounding the central structured region, where the Littleton softening temperature of the second glass is at least one but no more than ten degrees Celsius lower than the Littleton softening temperature of the first glass, or where the base ten logarithm of the glass viscosity in poise of the second glass is at least 0.01 but no more than 2 lower than the base ten logarithm of the glass viscosity in poise of the first glass at a fiber draw temperature. Also disclosed is a method of making a photonic bad gap fiber and/or fiber preform.
Abstract:
A method for producing a sulfide glass ceramic, including reacting a lithium compound, a phosphorus compound and a halogen compound in a solvent that contains a hydrocarbon and an ether compound to produce a sulfide glass that contains a Li element, a P element, a S element and one or more halogen elements, and heating the sulfide glass to produce a sulfide glass ceramic.
Abstract:
A method and apparatus for applying a mid-IR graded microstructure to the end of a chalcogenide glass optical fiber are presented herein. The method and apparatus transfer a microstructure from a negative imprint on a nickel shim to a chalcogenide glass fiber tip with minimal shape distortion and minimal damage-threshold impact resulting in large gains in anti-reflective properties.
Abstract:
There is provided a fiber including a cladding material that is disposed along a longitudinal-axis fiber length. A plurality of spherical particles are provided, separated from one another and disposed in a longitudinal line parallel to the longitudinal fiber axis. The particles are in a sequence with controlled periodic spacing between particles along at least a portion of the fiber length. Each spherical particle has a spherical particle material that is embedded within and elementally different than the fiber cladding material.
Abstract:
A thermoplastic filament comprising multiple polymers of differing flow temperatures in a regular geometric arrangement, and a method for producing such a filament, are described. Because of the difference in flow temperatures, there exists a temperature range at which one polymer is mechanically stable while the other is flowable. This property is extremely useful for creating thermoplastic monofilament feedstock for three-dimensionally printed parts, wherein the mechanically stable polymer enables geometric stability while the flowable polymer can fill gaps and provide strong bonding and homogenization between deposited material lines and layers. These multimaterial filaments can be produced via thermal drawing from a thermoplastic preform, which itself can be three-dimensionally printed. Furthermore, the preform can be printed with precisely controlled and complex geometries, enabling the creation of monofilament and fiber with unique decorative or functional properties.