Abstract:
A polymer powder (P) selected from a group consisting of (i) a polymer powder (P1) and (ii) a polymer powder (P2) is provided. The (i) polymer powder (P1) includes a (meth)acrylate-based polymer (A1) having a glass transition temperature of 0° C. or less, and the polymer powder has an acetone-soluble component of 5 mass % or more. The acetone-soluble component has a mass average molecular weight of 100,000 or more. The (ii) polymer powder (P2) has an acetone-soluble component of 2 mass % to 35 mass %, the acetone-soluble component has a mass average molecular weight of 100,000 or more, and has a volume average primary particle size (Dv) of 200 nm or more.
Abstract:
To provide an epoxy resin composition that is suitable for producing optical sheets which exhibit excellent transparency, heat resistance, strength, smoothness and light resistance, and a cured product thereof.An epoxy resin composition for optical 3 sheets, the composition comprising a polyvalent carboxylic acid (A) represented by formula (I): (wherein, R1's each independently represent a hydrogen atom, an alkyl group having 1 to 15 carbon atoms, or a carboxyl group; q represents the number of substituent R1's, and represents an integer from 1 to 4; and P represents any one of the following x, y and z): (wherein, there may be a plural number of R2's per ring, and R2's each independently represent a hydrogen atom or a methyl group; and * represents a bonding site linked to the oxygen atom; y. A linear alkylene linker having 6 to 20 carbon atoms, with a main chain having 3 or more carbon atoms and being substituted with an alkyl group in at least one site); (wherein, R's each independently represent a hydrogen atom, an alkyl group having 1 to 15 carbon atoms, or a carboxyl group; and * represents a bonding site linked to the oxygen atom, and an epoxy resin (B) having an aliphatic cyclic structure in the molecule).
Abstract:
Provided is a transparent polycarbonate composition that includes: (A) 5 to 95 wt % of biphenyl modified polycarbonate including a repeating unit represented by Chemical Formula 1, a repeating unit represented by Chemical Formula 2, and a repeating unit represented by Chemical Formula 3; and (B) 1 to 50 wt % of an acrylate-based copolymer including (B-1) a repeating unit derived from aromatic (meth)acrylate having a refractive index of 1.58 to 1.70 and (B-2) a repeating unit derived from a mono-functional unsaturated monomer.
Abstract:
A transparent article includes a continuous polyester matrix having at least one incompatible filler dispersed therein. The incompatible filler provides domains in the polyester matrix, each domain having a particular dimension, thus providing a range of dimensions for the domains in the article. To create haze, the dimensions are within the range of from about 380 nm to about 720 nm. Once the range of dimensions is determined, a light absorbent composition can be found which absorbs light at a range of wavelengths that at least substantially covers the range of dimensions of the domains. In doing so, it has been found that the haze of the article can be substantially masked. Method for producing the article and for masking the haze are also provided.
Abstract:
A film-forming composition that contains a tricarbonyl-benzene hyperbranched-polymer cross-linker and a triazine-containing hyperbranch, as shown for example in the formula, can form a thin film that excels in terms of hardness and heat tolerance and exhibits a reduced decrease in index of refraction despite the addition of the cross-linker.
Abstract:
The instant invention provides a blend composition suitable for injection molded articles. The blend composition suitable for injection molded article according to the present invention comprises: (a) from 50 to 80 percent by weight of a propylene/α-olefin interpolymer composition; (b) from 5 to 25 percent by weight of a homopolymer polypropylene, a random copolymer polypropylene, clarified random copolymer polypropylene, and combination thereof; and (c) from 5 to 39 percent by weight of a plasticizing agent; wherein said blend composition has a total haze of less than 25 percent.
Abstract:
Heterophasic polypropylene resin having an MFR (2.16 kg, 230° C.) of more than 27 g/10 min, determined according ISO 1133 comprising a propylene homo- or copolymer matrix (A) and an ethylene-propylene rubber phase (B) dispersed within the matrix, wherein the heterophasic polypropylene resin has a fraction insoluble in p-xylene at 25° C. (XCU) in an amount of 75 to 85 wt.-% with a weight average molecular weight of 110 to 190 kg/mol measured by GPC analysis according to ISO 16014-1, and 4, the fraction insoluble in p-xylene at 25° C. (XCU) containing monomer units derived from ethylene in an amount of 12.0 to 21.0 wt.-% and a fraction soluble in p-xylene at 25° C. (XCS) in an amount of 15 to 25 wt.-% having an intrinsic viscosity of 1.4 to 2.0 dl/g, determined according to DIN EN ISO 1628-1 and -3 and being composed of propylene monomer units in an amount of 40 wt.-% or more, and having a glass transition temperature Tg as measured by DSC according to ISO 6721-7 at a compression moulded sample consisting of the XCS fraction in the range of −60 to −50° C.
Abstract translation:根据ISO 1133测定的具有大于27g / 10min的MFR(2.16kg,230℃)的多相聚丙烯树脂,其包含丙烯均聚物或共聚物基质(A)和乙丙橡胶相(B)分散 其中多相聚丙烯树脂在25℃下具有不溶于对二甲苯的馏分(XCU),其量为75至85重量%,重均分子量为110至190kg / mol 通过根据ISO 16014-1和4的GPC分析,和4,在25℃下不溶于对二甲苯的馏分(XCU)(XCU)含有12.0至21.0重量%的衍生自乙烯的单体单元和可溶于 25℃的对二甲苯(XCS),其量为15至25重量%,特性粘度为1.4至2.0dl / g,根据DIN EN ISO 1628-1和-3测定,并且由 丙烯单体单元的量为40重量%以上,并且具有根据ISO 6721-7在压缩下通过DSC测量的玻璃化转变温度Tg 由XCS组分组成的样品在-60至-50℃的范围内。
Abstract:
To provide an ABS resin composition which gives a molded article having an excellent antistatic property and generating a small amount of outgas at the time of manufacturing and storage/transportation. An ABS resin composition including: (A) 100 parts by mass of an ABS resin having a total light transmittance of 70% or more; (B) 1 to 70 parts by mass of an antistatic agent including a polyether ester amide having a polyamide 12 skeleton; (C) 1 to 70 parts by mass of an acid-modified methacrylic acid-based polymer having a refractive index of 1.50 to 1.56.
Abstract:
Methods for preparing an impact copolymer by selecting a continuous phase polymer having a first melt flow rate and selecting a rubber phase polymeric material such that the final melt flow rate of the impact copolymer is within 2 g/10 min of the first melt flow rate. Impact copolymers made from such methods and films and molded articles produced from such impact copolymers are also included.
Abstract:
Provided is an aqueous coating composition including: particular amounts of certain first solid polymeric particles having an average diameter of 0.60-0.99 μm; certain second solid polymeric particles having an average diameter of 2-20 μm, and mixtures thereof; and, third solid polymeric particles having a calculated Tg of from −60 C to 120° C. and an average particle diameter of from 50 nm to 500 nm; wherein the second solid polymeric particles have a K10 value of less than 1.9E+10 N/m2; wherein the difference between the refractive index of the outer surface of the second solid polymeric particles and the refractive index of the third solid polymeric particles is between 10E-4 to 10E-2; and wherein the aqueous coating composition comprises less than 10% by volume, inorganic extender particles. A method for providing a coating from the aqueous coating composition and a low glare coating so formed are also provided.