Abstract:
A lubricating coating which can prevent the occurrence of galling even when makeup is carried out with a high torque and which has excellent rust preventing properties is formed on the contact surfaces of a pin and/or a box of a tubular threaded joint. The lubricating coating contains copolymer particles made from particles of an acrylic-silicone copolymer with an average particle diameter of 10-50 μm dispersed in a highly viscous matrix made from a mixture of a rosin-based substance selected from rosin and its derivatives, wax, a metal soap, and a basic metal salt of an aromatic organic acid (such as highly basic Ca sulfonate).
Abstract:
A solid lubricating coating formed on a contact surface of a threaded joint for pipes has a matrix of a lubricating oil-containing polymer. The lubricating oil-containing polymer has either a uniform composition or a gradient composition in which the concentration of lubricating oil decreases towards the contact surface and in which there is substantially no lubricating oil in the vicinity of the contact surface.
Abstract:
A grease composition includes: at least one mineral-based, synthetic-based, or natural-based oil, a thickener predominantly consisting of at least one simple or complex aluminium soap; at least one molybdenum dithiocarbamate; and graphite. The grease can be used for the lubrication of open systems.
Abstract:
A thin adhesive lubricating composition that can cover at least one thread and a screwing abutment of a threaded element of a component of a tubular threaded joint. The screwing abutment can bear against another abutment of another component of the tubular threaded joint in a terminal make up phase. The lubricating composition includes a matrix in which there is dispersed at least one braking additive selected to impart thereto, in addition to lubrication, a coefficient of friction to make it possible to obtain a torque on shoulder resistance value at least equal to a threshold value.
Abstract:
The invention provides a lubricating grease composition with a worked penetration of 400 to 500 for a machine tool equipped with an automatic lubricator, containing a base oil having a kinematic viscosity at 40° C. of 10 to 200 mm2/s and 0.1 to 10 mass % of solid particles insoluble in the base oil. The lubricating grease composition of the invention can be fed using the automatic lubricator attached to the machine tool, and can prevent the stick-slip from occurring on the sliding lubrication portion of the machine tool.
Abstract:
To provide a water-based lubricant for plastic working excellent in moisture absorption resistance and corrosion resistance, with which degradation in lubricating performances such as lubricity, workability and seizure resistance may not occur even under high-temperature/high humidity environments.A water-based lubricant for plastic working, comprising a resin component containing a copolymer or homopolymer of monomers having an ethylenically unsaturated bond, including at least maleic anhydride (A), an inorganic component (B), and a solid lubricating component (C), wherein maleic anhydride moieties of the resin component (A) are blocked with a nitrogen-containing compound at a blocking ratio of 10 to 80%, and unblocked maleic anhydride moieties are neutralized with an alkaline component at a degree of neutralization of 40 to 100%.
Abstract:
The present invention concerns a high-temperature lubricant for the hot shaping of high-grade and carbon steels, which has a content of graphite, organic blowing agent and inorganic separation agent, and the use thereof. In order to provide a high-temperature lubricant which can be used for a wide range of steel qualities for different wall thicknesses to be rolled and stretching effects and which is moreover stable in respect of temperature, provides constant rolling results upon a change in the wall thickness and/or the quality of steel and does not lead to unwanted cementation of the rolled material,za the high-temperature lubricant according to the invention contains at least the following constituents in percent by weight with respect to the solids content: (a) 40 to 90% by weight graphite, (b) 2 to 50% by weight organic blowing agent, and (c) 5 to 50% by weight inorganic separation agent, wherein the organic blowing agent (b) is selected from the group consisting of melamine, melam, melem, melon, phosphate salts and polyphosphate salts of the aforesaid compounds with phosphate chain lengths in the region of n=1 to 1000, reaction products and adducts of the aforesaid compounds with cyanuric acid or isocyanuric acid, and mixtures of the aforesaid, and the inorganic separation agent (c) is a sheet silicate or a mixture of sheet silicates.
Abstract:
A gear oil composition is provided. The composition comprises a major amount of base oil comprising a mixture of a mineral base oil and polybutene; and 0.1 to 0.5 wt % of carbon black, based on the total weight of the gear oil composition. Such compositions can provide improved viscosity stability.
Abstract:
Provided are a mixed nano-lubricating oil and a method for preparing the same. The method for preparing a mixed nano-lubricating oil includes the steps of: (a) preparing a mixed solution by adding and mixing a nanopowder and a dispersant to a solvent and pulverizing the nanopowder to a primary particle level; (b) modifying the surface of the nanopowder; (c) substituting the solvent of the mixed solution to a lubricating oil; and (d) mixing at least two nano-lubricating oils prepared using physically and chemically different nanopowders. According to the present invention, it is possible to improve the wear resistance and the load resistance at the same time by mixing at least two kinds of lubricating oils having excellent wear resistance or load resistance.
Abstract:
Coating systems which provide corrosion resistance and, optionally, lubrication, for threaded connections are disclosed. The compositions comprise a first coating composition comprising polymer matrices of polyimides or epoxies which are modified with small amounts of a fluorine containing polymer. Also present in the coating compositions are corrosion inhibiting agents and inorganic particles having a mean diameter of between approximately 10 nm and 10 μm. Solid lubricants, which may include at least one of PTFE, HDPE, Graphite, and MoS2, are optionally added to provide the first coating with a low coefficient of friction. The coating systems may further comprise a second coating composition, comprising a solid lubricant dispersed within an epoxy resin and a solvent. The first and second coating compositions are deposited on at least a portion of at least one of the pin and box members of the threaded connections.