Abstract:
The folding doors 100 includes of a first door panel 150 and a second door panel 110, the first door panel 150 being attached to the door opening portion of the wall rotatively by a pin 150. The second door panel 110 is attached to the first door panel 150 by a hinge 4. A guiding device 120 is mounted on the upper portion of the second door panel 110. The guiding device 120 holds a slider 122 and a rotary damper 200 for damping the rotation of the axis holding the slider. The slider 122 slides without rotating inside the guiding rail mounted on the upper portion of the door opening portion. The second door panel 110 rotates by opening/closing action, so by damping this relative rotation with the rotary damper 200, the folding doors could be closed quietly.
Abstract:
A rotation deceleration device used for a sanitary cleaning device which includes a toilet seat and a toilet cover and is attached to a toilet bowl, thereby injecting warm water in the toilet bowl. The rotation deceleration device includes a cylinder having a hydraulic chamber filled with a control oil; a rotation shaft inserted through the cylinder; a control wall radially projected from the rotation shaft to divide the hydraulic chamber into at least two sub chambers; a control valve provided between the control wall and an inner surface of the cylinder. The control valve has a closing wall opposed to a side surface of the control wall so as to be attachable thereto and also has an engaging member opposed to the other side of the control wall so as to be engageable therewith in accordance with the rotation of the rotation shaft. The control valve is formed of a material which has a higher coefficient of thermal expansion than that of a material forming the control wall and the cylinder.
Abstract:
A door closer (20) is attachable to a door (24) and includes a cylinder (36) which forms a chamber (44) in which a piston element (50) is movable to move fluid from the chamber to a reservoir (82) upon opening of the door. After the door (24) has been opened to a position, for example, of ninety-five to one hundred degrees, continued opening of the door causes the fluid to be compressed within the chamber (44) and to be directed only through a back check valve (95) to the reservoir (82). This results in the development of an adjustable "back check" condition to provide a counterforce to the continued opening of the door. A passageway (150) is formed in cylinder (36) to allow fluid to flow relatively freely from chamber (44) to reservoir (82) until an inward end (56) of piston element (50) has travelled a prescribed distance "x." This prescribed distance of travel represents the opening of door (24) to ninety-five to one hundred degrees from the door's normally closed position.
Abstract:
A door closer wherein a housing defines a fluid-containing space and rotatably supports a shaft which is articulately connected with a pivotable door panel. A piston in the housing divides the space into a chamber and a compartment and has a toothed rack which mates with a pinion on the shaft so that the piston moves in the housing in response to rotation of the shaft as a result of pivoting of the door panel and vice versa. One or more springs in the chamber bias the piston in a direction to pivot the door panel toward closed position. A channel in the housing establishes communication between the chamber and the compartment during an initial stage of movement of the door panel from closed position at which time the piston moves in a direction to reduce the volume of the chamber. A bypass in the piston provides a path for the flow of fluid from the chamber into the compartment during a following stage of pivoting of the door panel toward open position, and the cross-sectional area of such path increases gradually in a direction from the chamber toward the compartment. The bypass can be provided in the peripheral surface of the piston or in the peripheral surface of the body of a check valve which is installed in the piston and serves to permit the fluid to flow from the compartment into the chamber during pivoting of the door panel toward closed position.
Abstract:
A rotary damper includes a sealed cylindrical housing containing viscous oil, a driven shaft rotatably supported within the housing, and a plurality of rotors and spacers arranged alternately and disposed upon a portion of the driven shaft extending in the axial direction of the housing. The rotors are held rotatably in unison with the driven shaft. The spacers are secured to the housing so as to permit the driven shaft to be rotated relative to the spacers. The rotors and spacers are formed with respective air-purging notches communicating with gaps defined between the rotors and the spacers whereby the air can be eliminated from such gaps and the viscous oil disposed within such gaps in order to provide the damper with the desired damping efficiency.
Abstract:
A delayed action door closer that delays a portion of the closing of a door for an adjustably determined period of time after the door has been moved to its fully open position. An interdependent hydraulic speed control system utilizes a delayed action speed control regulating valve which controls the closing speed of the door in the delayed action zone only, and whose speed cannot be adjusted faster than the main closing speed, but can be adjusted to provide a desired delay time prior to the door closing under normal regulation. The placement of the interdependent hydraulic system in the checking end of the closer allows the closer to have a fully adjustable independent backcheck.
Abstract:
An attachment for a conventional, surface mounted, overhead door control incorporating electrically actuated provision for holding the door open to any desired degree, but defeatable by manual pressure or by deenergization of the electric circuitry.
Abstract:
A door check includes a cam coupled to the door and having opposite profiles against which a follower on one end of a lever is stressed by a spring, the other end of the lever actuating a damping cylinder. Particular shapes for the cam and for the orifice for escape from the cylinder are shown.